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Abstract

Bessel’s correction adjusts the denominator in the sample variance formula from n to
n − 1 to produce an unbiased estimator for the population variance. This paper includes
rigorous derivations, geometric interpretations, and visualizations. It then introduces the
concept of “bariance,” an alternative pairwise distances intuition of sample dispersion
without an arithmetic mean. Finally, we address practical concerns raised in Rosenthal’s
article [1] advocating the use of n-based estimates from a more holistic MSE-based view-
point for pedagogical reasons and in certain practical contexts. Finally, the empirical
part using simulation reveals that the run-time of estimating population variance can
be shortened when using an algebraically optimized “bariance“ approach to estimate an
unbiased variance.
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Keywords: Unbiased sample variance, Runtime-optimized linear unbiased sample vari-
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1 Introduction and Motivation

Variance estimation is a foundational task in statistics and econometrics, with the sample
variance being the default estimator in most applications. The unbiased version, corrected
by Bessel’s factor (dividing by n − 1 rather than n), compensates for the loss of one degree
of freedom due to pre-estimating the population mean. This correction is not just a simple
algebraic trick–it admits deep geometric interpretations via orthogonal projections in Rn and
can be derived rigorously from them.
Despite its theoretical appeal, the unbiased estimator is not always the most optimal in
practice. In small samples especially, its higher variance may lead to suboptimal inference.
This has led researchers to consider shrunken estimators that intentionally trade off a small
amount of bias for a significant reduction in variance, thereby minimizing mean squared
error (MSE). For example, empirical Bayes methods shrink sample variances toward a global
prior, stabilizing estimation across thousands of features in genomic studies [2]. Similar
techniques based on James-Stein shrinkage have been explored for variance estimation in
high-dimensional settings [3].
Beyond the univariate case, shrinkage ideas are especially powerful in multivariate settings.
In particular, shrinkage estimators for covariance matrices–such as the Ledoit-Wolf estima-
tor [4]—have gained popularity in fields like econometrics and finance, particularly in the
field of asset pricing. These estimators enhance the stability of sample covariance matrices
by shrinking them toward structured targets (e.g., the identity matrix), significantly improv-
ing conditioning in high-dimensional models, which are known to break down [4]. This has
practical relevance in the construction of variance-covariance matrices for portfolio optimiza-
tion, factor models, and robust standard error estimation in large-scale regression analysis
for econometric applications [5].
In this broader context, this paper revisits classical variance estimation and introduces a
novel perspective through the concept of an alternative measure of sample dispersion based
on the average squared differences between all unordered pairs in a sample. It can be shown
that for mean-centered data, the "bariance" equals exactly twice the unbiased sample vari-
ance. Moreover, a linear-time optimized formulation of the "bariance" can be derived using
simple algebraic properties that avoids quadratic pairwise computation, making it both the-
oretically elegant and computationally efficient.
Through a simulation study, I demonstrate that this optimized unbiased sample vari-
ance estimator remains unbiased and improves runtime. We then revisit the controversial
idea—advocated by Rosenthal [1]—that dividing by n (rather than n − 1) may yield lower-
MSE variance estimators in practice, especially when unbiasedness is not strictly required.
This paper tries to bridge classical econometric and statistical theory with modern consid-
erations of efficiency, robustness, and computational scalability, while re-instating the often
under-estimated choices in estimator design or usage.
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2 Definitions and Setup

Let X1, X2, . . . , Xn ∈ R be i.i.d. random variables with:

E[Xi] = µ, Var(Xi) = σ2

Define the sample mean and biased/unbiased variance estimates:

X̄ :=
1
n

n

∑
i=1

Xi, S2 :=
1
n

n

∑
i=1

(Xi − X̄)2, Ŝ2 :=
1

n − 1

n

∑
i=1

(Xi − X̄)2

3 Derivation of Bias and Bessel’s Correction

An estimator θ̂ for a parameter θ is called unbiased if its expected value equals the true
value:

E[θ̂] = θ

The normal n-based sample variance with denominator n is defined as:

S2 :=
1
n

n

∑
i=1

(Xi − X̄)2

We aim to compute E[S2], the expected value of this estimator, to show that it is biased.

We start by expanding the squared deviations:

n

∑
i=1

(Xi − X̄)2 ≡
n

∑
i=1

X2
i − nX̄2

Thus:

S2 =
1
n

(
n

∑
i=1

X2
i − nX̄2

)
=

1
n ∑ X2

i − X̄2

Then, take expectation of S2. By linearity of expectation to each term:

E[S2] =
1
n

n

∑
i=1

E[X2
i ]− E[X̄2]

Compute E[X2
i ]. Using the known identity:

E[X2
i ] ≡ Var(Xi) + (E[Xi])

2 = σ2 + µ2

So, the n cancels out, eventually:
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1
n

n

∑
i=1

E[X2
i ] =

1
n
· n(µ2 + σ2) = µ2 + σ2

Compute E[X̄2]. Recall that:

X̄ =
1
n

n

∑
i=1

Xi ⇒ E[X̄] = µ, Var(X̄) =
σ2

n

Thus:

E[X̄2] = Var(X̄) + (E[X̄])2 =
σ2

n
+ µ2

Combining both terms now:

E[S2] = (µ2 + σ2)−
(

µ2 +
σ2

n

)
= σ2 − σ2

n
=

(
n − 1

n

)
σ2

E[S2] =
n − 1

n
σ2

This shows that the estimator S2 is biased, underestimating the population variance σ2,
because the denominator is larger then the numerator.
Bessel’s Correction. To correct the bias, we define the unbiased sample variance as:

Ŝ2 :=
1

n − 1

n

∑
i=1

(Xi − X̄)2 ⇒ E[Ŝ2] = σ2

E[Ŝ2] = σ2 (unbiased)

This is known as Bessel’s correction — using n − 1 instead of n in the denominator compen-
sates for the loss of one degree of freedom from estimating the mean µ with X̄.
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4 Geometric Interpretation of Estimated Variance and n − 1 De-
grees of Freedom

4.1 Orthogonal Projection

Let X⃗ ∈ Rn be a data vector. Define the mean:

X̄ =
1
n

n

∑
i=1

Xi

and the mean vector:
µ⃗ = X̄ · 1⃗

We decompose:
X⃗ = µ⃗ + r⃗, r⃗ = X⃗ − µ⃗, r⃗ ∈ 1⃗⊥

span(⃗1)

1⃗⊥

X⃗

µ⃗ = X̄ · 1⃗

r⃗

0⃗

Figure 1: Projection of X⃗ onto mean direction span(⃗1) and residual in 1⃗⊥

4.2 Dimension Argument

X⃗ ∈ Rn

µ⃗ = X̄ · 1⃗ ∈ span(⃗1), dim = 1

r⃗ = X⃗ − µ⃗ ∈ 1⃗⊥, dim = n − 1

⇒ Degrees of Freedom = n − 1

4.3 Sample Variance

s2 =
1

n − 1
∥⃗r∥2 =

1
n − 1

n

∑
i=1

(Xi − X̄)2

The normalization by n − 1 accounts for the loss of one degree of freedom due to estimation
of the sample mean.
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5 Introducing the “Bariance”

We define the bariance of a sample {X1, X2, . . . , Xn} as the average squared difference over
all unordered pairs:

Bariance :=
1

n(n − 1) ∑
i ̸=j

(Xi − Xj)
2

This can be interpreted as the average squared length of all edges in the complete graph on
the sample points.
We begin by expanding the inner squared difference:

(Xi − Xj)
2 = X2

i − 2XiXj + X2
j

Summing over all distinct i ̸= j:

∑
i ̸=j

(Xi − Xj)
2 = ∑

i ̸=j
(X2

i + X2
j − 2XiXj)

We split this into three terms:

= ∑
i ̸=j

X2
i + ∑

i ̸=j
X2

j − 2 ∑
i ̸=j

XiXj

Note the following observations: - For fixed i, there are n − 1 values of j ̸= i, so:

∑
i ̸=j

X2
i = (n − 1)

n

∑
i=1

X2
i

Similarly, ∑i ̸=j X2
j = (n − 1)∑n

j=1 X2
j

So the first two terms become:

∑
i ̸=j

X2
i + ∑

i ̸=j
X2

j = 2(n − 1)
n

∑
i=1

X2
i

Now consider the double sum:

∑
i ̸=j

XiXj =

(
n

∑
i=1

n

∑
j=1

XiXj

)
−

n

∑
i=1

X2
i =

(
n

∑
i=1

Xi

)2

−
n

∑
i=1

X2
i

Combine:

∑
i ̸=j

(Xi − Xj)
2 = 2(n − 1)∑ X2

i − 2
((

∑ Xi
)2 − ∑ X2

i

)
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= 2(n − 1)∑ X2
i − 2

((
∑ Xi

)2 − ∑ X2
i

)
= 2(n − 1)∑ X2

i − 2
(
∑ Xi

)2
+ 2 ∑ X2

i

= 2n ∑ X2
i − 2

(
∑ Xi

)2

Substitute back into the Bariance formula. Now divide by n(n − 1):

Bariance =
1

n(n − 1) ∑
i ̸=j

(Xi − Xj)
2 ≡ 2n

n(n − 1) ∑ X2
i −

2
n(n − 1)

(
∑ Xi

)2

See empirical verification in appendix A.

Bariance =
2

n − 1
(
∑ X2

i
)
− 2

n(n − 1)
(
∑ Xi

)2

5.1 In the Case Of Mean-centered data

.
If the data is centered, i.e., ∑ Xi = 0, then:

Bariance =
2n

n(n − 1) ∑ X2
i =

2
n − 1 ∑ X2

i

We now relate this to the unbiased sample variance:

Ŝ2 =
1

n − 1

n

∑
i=1

(Xi − X̄)2 =
1

n − 1 ∑ X2
i (since X̄ = 0)

Therefore, following equality holds for the defined “Bariance“:

Bariance = 2 · Ŝ2

This result shows that bariance represents twice the unbiased sample variance when the
sample is mean-centered. It provides an elegant pairwise perspective on variance: instead
of summing squared deviations from a central value, we sum squared differences between
all pairs and average, despite the one we are currently looking from.

5.2 A Short Numerical Example with Five Numbers

Let X = {2, 4, 6, 8, 10} ⇒ X̄ = 6

∑(Xi − X̄)2 = 40, Ŝ2 =
40
4

= 10, Bariance =
2 · 200

20
= 20
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Metric Value

Sample Mean X̄ 6
Variance (biased) 8
Variance (unbiased) 10
Bariance 20
Bariance / 2 10

5.3 Graph-Theoretic View of Bariance

X1

X2

X3

X4
X5

Figure 2: Complete graph of sample values — each edge contributes as a component to the
“bariance”.

5.4 Deviation from Mean (Variance) vs. Pairwise Differences (Bariance)

X
X1 X2 X3 X4 X5

X̄ = 6
X5 − X1

Figure 3: Blue: variance (mean-deviation, n-1 degrees of freedom adjustment). Green: pair-
wise distance = a bariance component.

5.5 The Pairwise Difference Grid

0.0 4.0 16.0 36.0 64.0

4.0 0.0 4.0 16.0 36.0

16.0 4.0 0.0 4.0 16.0

36.0 16.0 4.0 0.0 4.0

64.0 36.0 16.0 4.0 0.0

2
2

4

4

6

6

8

8

10

10
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Figure 4: Symmetric Grid of (Xi − Xj)
2, 0.0 for i = j, for X = {2, 4, 6, 8, 10}
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6 Discussion: Should We Just Divide by n?

In Rosenthal [1] argues that using n instead of n−1 may lead to a smaller mean squared
error (MSE) — especially when teaching or in practical settings.

He shows that while dividing by n−1 yields an unbiased estimator, this might come at
the cost of higher variance. In some cases, a biased but lower-MSE estimator using n is
preferable:

“...a smaller, shrunken, biased estimator actually reduces the MSE...” — [1]

This introduces another viewpoint: unbiasedness isn’t always the ultimate goal — minimiz-
ing error in practice often is.

Numerical Example: Bias vs. MSE

Suppose we have n = 5 observations drawn from a population with true variance σ2 = 10.
Then:

• The biased estimator divides by n = 5: S2 ≈ 4
5 · σ2 = 8

• The unbiased estimator divides by n − 1 = 4: Ŝ2 = 10

Now compute Mean Squared Error (MSE):

MSE(S2) =
(
E[S2]− σ2)2︸ ︷︷ ︸

Bias2

+Var(S2)︸ ︷︷ ︸
Variance

MSE(Ŝ2) = 02︸︷︷︸
= Unbiased (Bessel’s correction)

+Var(Ŝ2)

It turns out (and Rosenthal notes this explicitly) that: - Var(S2) < Var(Ŝ2) - So in some cases,
even though S2 is biased, its total MSE is still smaller!
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7 A Simulation Study: Bias2, Variance, and MSE Across Denomi-
nator Values

We consider the family of estimators for the population variance σ2:

σ̂2
a :=

1
a

n

∑
i=1

(Xi − X̄)2 for varying a > 0

The simulation is carried out with the following parameters:

• Sample size: n = 5

• True variance: σ2 = 10

• Distribution: Xi ∼ N(0, σ2)

• Number of simulations: 100,000

For each value of a ∈ [3.5, 8.5] (in increments of 0.5), we compute the following empirically:

Bias(σ̂2
a ) = E[σ̂2

a ]− σ2

Bias2 =
(
E[σ̂2

a ]− σ2)2

Variance = Var[σ̂2
a ]

MSE = Bias2 + Variance

Empirical Results

Table 1: Empirical results averaged from 100,000 simulations for variance estimator using
n = 5 and a ∈ [3.5, 8.5] in 0.5 increments. The bold rows highlight a ∈ n − 1, n and n + 1,
respectively.

a (denominator) Bias2 Variance MSE

3.5 2.1044 65.8077 67.9122
4.0 0.0004 50.3840 50.3844
4.5 1.1967 39.8096 41.0063
5.0 3.9384 32.2458 36.1842
5.5 7.3615 26.6494 34.0109
6.0 11.0254 22.3929 33.4183
6.5 14.7015 19.0803 33.7819
7.0 18.2728 16.4519 34.7247
7.5 21.6817 14.3315 36.0131
8.0 24.9034 12.5960 37.4994
8.5 27.9314 11.1577 39.0891
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3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

10

20

30

40

50

Denominator a

V
al

ue

MSE, Bias2, and Variance of Variance Estimator

MSE
Bias2

Variance
Divide by n−1

Divide by n

Figure 5: Empirical MSE, Bias2, and Variance of the sample variance estimator for a ∈
[3.5, 8.5] and n = 5. Minimum MSE occurs between a = 5.5 and a = 6.5. (6 = n + 1 in the
case of N)
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8 Computational Complexity of Variance Bariance Estimators and
Optimization

Let X = {X1, X2, . . . , Xn} ⊂ R be a sample of size n. Define:

• Biased sample variance:

S2 :=
1
n

n

∑
i=1

(Xi − X̄)2

• Unbiased sample variance (Bessel corrected):

Ŝ2 :=
1

n − 1

n

∑
i=1

(Xi − X̄)2

• Bariance (pairwise variance):

Bariance(X) :=
1

n(n − 1) ∑
i ̸=j

(Xi − Xj)
2

14



Table 2: Computational complexity of variance and bariance estimators with explanation

Estimator Operations Complexity

Biased Variance
S2 = 1

n ∑(Xi − X̄)2

• 1 pass to compute mean X̄

• 1 pass to compute squared deviations

• Total: 2 linear scans

• For n = 5: 5 additions, 5 subtractions, 5
squarings

O(n)

Unbiased Variance
Ŝ2 = 1

n−1 ∑(Xi − X̄)2 Same steps as biased estimator; only the di-
visor differs.
No added computation.

O(n)

Bariance (Naïve)
1

n(n−1) ∑i ̸=j(Xi − Xj)
2

• All n(n − 1) ordered pairs evaluated

• Each requires subtraction + squaring

• For n = 5: 5 × 4 = 20 pairs

• Cost grows quadratically with sample
size

O(n2)

Bariance (Optimized)
2n

n(n−1) ∑ X2
i −

2
n(n−1) (∑ Xi)

2

• Uses 2 scalar sums: ∑ Xi, ∑ X2
i

• Each computed in 1 pass

• For n = 5: 5 additions, 5 squarings

O(n)

8.1 Computational Complexity Comparison with Numerical Illustration

We compare the computational cost of the biased variance, unbiased variance, and bariance
estimators using both theoretical analysis and a numerical example for n = 5.

15



Example: X = {2, 4, 6, 8, 10}

Biased Variance:
X̄ = 6, S2 =

1
5 ∑(Xi − 6)2 =

40
5

= 8

Unbiased Variance:
Ŝ2 =

1
4 ∑(Xi − 6)2 =

40
4

= 10

Naïve Bariance:

∑
i<j

(Xi − Xj)
2 = 200, (10 unordered pairs) ⇒ Bariance =

2 · 200
20

= 20

Optimized Bariance:

∑ Xi = 30, ∑ X2
i = 220

Bariance =
2 · 5
5 · 4

· 220 − 2
5 · 4

· 900 = 110 − 90 = 20

Thus, all estimators yield consistent results, but the number of operations differs significantly
with growing n.
While the pairwise form of the bariance appears quadratic, algebraic reduction allows it to
be computed in linear time, just like classical variance. This makes it a viable alternative
even in large-scale statistical computations.
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8.2 Empirical Runtime

To evaluate the practical performance of variance and bariance estimators, we conducted an
empirical benchmark based on simulated data. The goal was to measure actual computation
time across increasing sample sizes for the four as above defined estimators.

8.2.1 Parameters of the Normal-Based Simulation

• Number of simulations per sample size: 1000

• Sample sizes tested: n ∈ {10, 20, . . . , 100}

• Distribution: Xi ∼ N(0, 1)

• Timing measurement: Wall-clock time per estimator (summed over 1000 replications)

• Hardware environment: CPU timing measured in Python on a standard workstation

All implementations were naïvely vectorized using broadcasting or looped to mimic real
computational effort and make the comparison fair between estimator types.

Table 3: Empirical runtime (in seconds) for 1000 simulations per estimator at different sample
sizes

n Biased Variance Unbiased Variance Bariance (Naïve) Bariance (Optimized)

10 0.0131 0.0142 0.0601 0.0119
20 0.0208 0.0143 0.2191 0.0092
30 0.0115 0.0115 0.4872 0.0091
40 0.0121 0.0123 0.8767 0.0104
50 0.0134 0.0132 1.5155 0.0092
60 0.0124 0.0122 2.1050 0.0090
70 0.0186 0.0176 2.7712 0.0087
80 0.0126 0.0205 3.6592 0.0155
90 0.0139 0.0135 5.0322 0.0095

100 0.0127 0.0125 5.6617 0.0098
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Unbiased

Naive Bariance
Optimized Bariance

Figure 6: Empirical runtime comparison of variance and bariance estimators over 1000 sim-
ulations per sample size.

8.2.2 Gamma-Distributed Data

To examine runtime behavior under non-Gaussian conditions, we conducted a second sim-
ulation study using data generated from a Gamma distribution. The Γ-distribution is posi-
tively skewed, making it a useful alternative to test estimator performance beyond the sym-
metric N case.

Parameters of the Gamma-Based Simulation

• Number of simulations per sample size: 500

• Sample sizes tested: n ∈ {100, 200, 300, 400, 500}

• Distribution: Xi ∼ Γ(2, 2)

• Timing measurement: Wall-clock time per estimator (summed over 500 replications)

• Hardware environment: Standard workstation with vectorized Python implementa-
tion

18



Table 4: Empirical runtime (in seconds) for 500 simulations per estimator using Gamma-
distributed data

n Biased Variance Unbiased Variance Bariance (Naïve) Bariance (Optimized)

100 0.0073 0.0105 0.0149 0.0065
200 0.0083 0.0101 0.0430 0.0084
300 0.0080 0.0102 0.1075 0.0073
400 0.0077 0.0101 0.1937 0.0074
500 0.0128 0.0164 0.3266 0.0095

8.2.3 Highly Dispersed Gamma-Distributed Data

To further assess runtime robustness under high skew and dispersion, we generated data
from a Γ distribution with increased variance. This setup simulates conditions with greater
variability, which are common in skewed real-world datasets.

Parameters of the Highly Dispersed Gamma-Based Simulation

• Number of simulations per sample size: 1000

• Sample sizes tested: n ∈ {50, 100, 150, 200, 250}

• Distribution: Xi ∼ Γ(1.5, 4.0)

• Timing measurement: Wall-clock time per estimator (summed over 1000 replications)

• Hardware environment: Standard workstation with vectorized Python implementa-
tion

Table 5: Empirical runtime (in seconds) for 1000 simulations using a highly dispersed
Gamma distribution

n Biased Variance Unbiased Variance Bariance (Naïve) Bariance (Optimized)

50 0.0134 0.0171 0.0173 0.0141
100 0.0132 0.0171 0.0284 0.0121
150 0.0139 0.0184 0.0507 0.0128
200 0.0156 0.0183 0.0831 0.0127
250 0.0161 0.0179 0.1284 0.0129
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9 Conclusion

Bessel’s correction is a foundational concept that ensures unbiased estimates of variance.
We explored its necessity through algebraic, geometric, and pairwise differences reasoning
(“Bariance“), building both intuition and understanding. Additionally, we considered a
pedagocial and practical perspective, such as Rosenthal’s MSE-based view for estimating
variance.
Although the unbiased estimator is mathematically correct in expectation, the biased ver-
sion can sometimes be more intuitive, and, in certain contexts, is statistically preferable
in most cases – for many sampling distributions. Furthermore, the empirical results re-
veal a faster runtime in our simulation example using the average pairwise differences def-
inition as unbiased variance estimator when using the algebraically optimized definition
with scalar sums. Further research could focus on experiments using unbiased or shrunken
runtime-optimized covariance estimators with the application of speeding up construction
of variance-covariance matrices.
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A Proof of Equivalence: Naïve vs Optimized Bariance Estimators

To verify the theoretical equivalence between the naïve and optimized formulations of the
bariance estimator, we conducted a simulation study using the exact formulas defined in
Table 2. The data were drawn from a highly dispersed Γ- distribution.

Estimator Formulas

• Naïve Bariance:
Bariancenaïve =

1
n(n − 1) ∑

i ̸=j
(Xi − Xj)

2

• Optimized Bariance:

Barianceopt =
2n

n(n − 1) ∑ X2
i −

2
n(n − 1)

(
∑ Xi

)2

Simulation Parameters

• Distribution: Γ(1.5, 4.0)

• Sample sizes: n ∈ {50, 100, 150, 200, 250}

• Number of simulations per n: 1000

• Language: Python (NumPy)

• Precision check: numpy.allclose with rtol = 10−9, atol = 10−9

Results

Table 6: Bariance estimator comparison using formula-based definitions

n Mean Naïve Bariance Mean Optimized Bariance Max Absolute Difference

50 47.0330 47.0330 8.53 × 10−14

100 48.4181 48.4181 7.82 × 10−14

150 47.9282 47.9282 7.11 × 10−14

200 47.8339 47.8339 8.53 × 10−14

250 47.6121 47.6121 4.97 × 10−14

Conclusion

Across all sample sizes tested, the values of the bariance computed using both the naïve and
optimized formulas were numerically equivalent within machine precision. This empirically
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confirms the algebraic identity:

1
n(n − 1) ∑

i ̸=j
(Xi − Xj)

2 ≡ 2n
n(n − 1) ∑ X2

i −
2

n(n − 1)
(
∑ Xi

)2
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