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Abstract

Internal migration flows from rural to urban areas have greatly contributed

to population declines in many rural areas across both Europe and the US.

At the same time there is mounting evidence for a tight connection between

internal migration and shifts in labor demand, with the latter being heavily

affected by the rise of automation technologies. Therefore this paper analyzes

the effects industrial robotization has had on manufacturing employment and

internal migration in Austria during the period 2003-2016, specifically focusing

on rural-to-urban migration flows. The results show that robotization has

caused significant declines in manufacturing employment to which populations

reacted by increased out-migration. This migratory response takes the form of

rural-to-urban migration, thereby contributing to population declines in many

rural areas in Austria. These rural-to-urban movements are primarily driven

by young and medium/low skilled individuals, i.e. those groups that bear the

strongest shock incidence.
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1 Introduction:

Over the last decades population declines in remote rural areas have become a per-

sistent feature of demographic change in both Europe and the US. As young and highly

educated individuals increasingly migrate towards the cities, declining rural regions

are left with lasting declines in human capital (Bjerke and Mellander, 2017) and eco-

nomic performance (Dax and Fischer, 2018), the disappearance of many private and

public services (Rickardsson, 2021) and drastic shifts in the age structure (Johnson,

Field, and Poston Jr., 2015). As a consequence rural depopulation contributes to in-

creased geographic inequality and fosters political polarization, as ”the left behind”

(Wuthnow, 2018) show increasingly strong support for populist political movements.

Correspondingly, the support of declining rural regions contributed strongly to the vic-

tory of Donald Trump in the 2016 US elections (Scala and Johnson, 2017, Wuthnow,

2018), Brexit (Lee, Morris, and Kemeny, 2018) and the electoral success of far-right

populist parties in several European countries (see for example Franz, Fratzscher, and

Kritikos, 2018, Rickardsson, 2021 or Kenny and Luca, 2021).

Despite the detrimental impact of rural depopulation on economic, social and po-

litical cohesion in Europe and the US, most of the research concerned with the causes

of rural-to-urban migration is focused on low and middle income countries.1 A notable

exception to this is the recent work of Johnson and Lichter (2019) who document large

and persistent rural-to-urban migration flows for the US. With regards to the causes of

rural-to-urban migration they argue for a close connection to declines in manufacturing

employment in rural areas. This mirrors a well established notion in the economic lit-

erature that internal migration flows play a crucial role in the reaction to regional labor

1See for example Zhao (1999), Brueckner and Lall (2015), Lagakos, Mobarak, and Waugh (2018),

Peri and Sasahara (2019) or Lagakos (2020).
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demand shocks.2 Since labor demand in the manufacturing industries has experienced

growing pressure in recent decades through the rise of automation technologies3, there

thus appears to be scope for a connection between rural depopulation and automation.

Therefore this paper analyses the effects industrial robotization has had on internal

migration and, more specifically, rural-to-urban migration in Austria during the period

2003–2016. For this I use detailed data on municipality-to-municipality migration flows.

Following Acemoglu and Restrepo (2020) and Dauth et al. (2021) changes in roboti-

zation are predicted as a shift-share variable, using regional industry structures and

industry-level data on robot densification from the International Federation of Robotics

(IFR). To isolate the causal effect of robotization on internal migration and rural depop-

ulation, predicted robot exposure is instrumented with a shift-share-type instrumental

variable, which is constructed from industry level robotization trends in other high in-

come countries. As is shown in Borusyak, Hull, and Jaravel (2022) leveraging plausibly

exogenous variation in robotization shocks in other high income countries isolates the

component of robot adoption that is driven by exogenous advances in technological pos-

sibilities. Applying this identification strategy to the Austrian data confirms a robust

negative effect of robotization on manufacturing employment and a positive effect on

out-migration flows, indicating that robotization has had displacement effects in highly

exposed local labor markets, which in turn led to migratory responses of affected work-

2Prominent examples of this literature are Blanchard and Katz (1992), Bound and Holzer (2000),

Cadena and Kovak (2016), Huttunen, Møen, and Salvanes (2018), Foote, Grosz, and Stevens (2019),

Greenland, Lopresti, and McHenry (2019) or Notowidigdo (2020). For employment shocks caused by

industrial robots, Faber, Sarto, and Tabellini (2021) have recently shown that robotization caused

declines in the working age-population of particularly affected US local labor markets.

3See for example Autor, Levy, and Murnane (2003), Goos and Manning (2007), Autor, Katz, and

Kearney (2008), Autor and Dorn (2013), Goos, Manning, and Salomons (2014), or Acemoglu and

Restrepo (2020) among many others.
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ers. Decomposing these migration flows by the type of origin and destination region

(urban or rural) reveals that robotization lead to out-migration in affected rural areas,

with the majority of this out-migration taking the form of rural-to-urban migration

flows, thereby contributing to rural depopulation. This effect on rural-to-urban mi-

gration flows is primarily driven by the demographic sub-groups whose employment

prospects are most heavily affected by the robotization shock, namely by young and

medium to low skilled individuals.

This paper relates to the extensive literature on the effects of industrial robots on

labor market outcomes, as well as the literature on migratory responses to local labor

demand shocks. It contributes to this literature by (i) showing that robotization shocks

are mitigated by out-migration in a similar fashion as other large scale labor demand

shocks and (ii) connecting these migratory responses to a highly relevant demographic

trend in recent decades – rural depopulation. To the best of my knowledge, this paper

is the first to present causal evidence on a connection between shifts in labor demand

and rural depopulation.

The rest of this paper is structured as follows: Section 2 presents a descriptive

overview over population trends in rural Austria. Section 3 presents the used data

sources, while Section 4 discusses the empirical approach and the identification strategy.

Section 5 presents the main results of the analysis and explores the robustness of these

results. Lastly, Section 6 offers a brief discussion and concludes.

2 Rural Depopulation in Austria

To illustrate the close connection between out-migration and general population

trends in rural regions, Figure 1 compares the change in overall population counts

(panel A) and the migration balance (panel B) of all Austrian municipalities between
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2001 and 2016.4 While urban areas generally showed increases in population counts and

net in-migration, a large fraction of rural municipalities experienced population losses

through out-migration. These declining rural municipalities tend to be in more remote

areas of Austria, as rural regions in closer proximity to urban centers also experienced

population growth. While some rural regions thus appear to benefit from positive

population spillovers from nearby urban centers (Veneri and Ruiz, 2016), around 46%

of all rural municipalities show a negative migration balance for the period 2001 to

2016 (Table 1, panel A). By 2016 those declining rural municipalities on average lost

about 6.4% of their 2001 population (panel B, column 4). These population losses in

declining rural areas are largely driven by out-migration, which on average accounts for

a population loss of around −3.53%. The remainder of the population loss is explained

by the fact, that individuals who leave a municipality are typically younger, than those

who stay behind, leading to older societies and declines in the birth balance. This

highlights that rural out-migration not only directly decreases population counts in

declining rural areas, but also has an indirect negative effect through the acceleration

of natural decline (Johnson, Field, and Poston Jr., 2015).

Distinguishing between internal- and external-migration flows in panel B of Table

1 reveals that in the absence of migration from other countries (i.e. in the absence

of external migration) the average net outflows in rural communities with declining

populations would be much stronger with an average internal net outflow of around

4Urban areas and rural areas are classified according to the urban-rural-classification from the

Austrian statistical agency Statistics Austria. This classification consists of three broad categories of

municipalities: urban centers, regional centers and rural areas, each consisting of several subcategories.

It is graphically depicted in Figure A1 in the Appendix. For this paper, I consider municipalities

classified as ’urban centers’ (large, medium or small) as urban, while all remaining municipalities

(including regional centers) are classified as rural. All results presented in this paper are robust to this

choice.
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Figure 1: Population trends (2001-2016) by municipality type

(a) Population Change (2001-2016)

(b) Net Migration (2001-2016)

Note: Municipalities are classified according to the urban-rural classification from the Austrian Statis-
tical Agency (Statistics Austria - see Figure A1 in the Appendix). Large urban centers (according to
the urban-rural classification) are indicated by name. All remaining urban centers (medium and small)
are indicated by lighter colors. Rural areas and regional centers are depicted as a single category. Pop-
ulation data is from the decennial census (2001) and the registry based labor market statistics (2016).
Data on net migration-flows is taken from the migration statistics. All data sources are available from
Statistics Austria and are described in more detail in Section 3.

5



Table 1: Descriptives: (2001-2016)

Urban Rural

All Growing Declining

(1) (2) (3) (4)

Panel A: Fraction of municipaities

with population declines: 14.29% 42.17%
with negative migration balance: 16.45% 45.78%

Panel B: Population change 2001-2016 (in % of 2001 population)

Population Change: +14.7% +3.51% +9.6% –6.4%

Migration balance: +13.01% +3.42% +7.7% –3.53%
Internal: +1.72% –1.72% +1.8% –7.44%
External: +11.29% +5.14% +5.9% +3.91%

Birth balance: +1.69% +0.08% +1.9% –2.87%

Panel C: Internal migration balance by destination type:

Total: +1.72% –1.72% +1.8% –7.44%
Urban destination: +0% –1.72% +0.36% –5.09%
Rural destination: +1.72% -0% +1.44% –2.35%

Panel D: Internal migration balance by age:

Total: +1.72% –1.72% +1.8% –7.44%
Age 0 to 34: +2.88% –2.88% –0.51% –6.73%
Age 35 to 64: –0.95% +0.95% +1.83% –0.48%
Age 65 and above: –0.21% +0.21% +0.48% –0.23%

Panel E: Share of individuals aged 65 and older:

2001 15.78% 15.14% 14.14% 16.76%
2011 17.68% 17.84% 16.72% 19.87%
2016 17.98% 19.17% 17.99% 21.41%
Increase: +2.21% +4.03% +3.85% +4.65%

Panel F: Share of manufacturing industries in total employment:

2001 14.47% 26.29% 25.8% 27.1%
2011 9.16% 23.42% 22.72% 24.68%
2016 10.97% 22.91% 22.44% 23.8%
Decrease: –3.5% –3.38% –3.36% –3.3%

Note: Municipalities are classified according to the urban-rural classification from the Austrian Sta-
tistical Agency (Statistics Austria - see Figure A1 in the Appendix). Population data is from the
decennial census (2001), the register-based census (2011), and the register based labor market statis-
tics (2016). Migration flow data is from the migration statistics. Since the register based census, the
register based labor market statistics and the migration statistics are collected from the same adminis-
trative register and refer to the same reference date (October 31st of any year) they are consistent and
directly comparable. Therefore the birth balance can be calculated as the part of population change
that is not explained by the migration balance. Data on manufacturing employment is taken from the
Austrian Social Security Database (ASSD). All data sources are described in more detail in Section 3.
All statistics are calculated as population weighted averages.
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−7.44% (panel B, column 4), which is partly compensated by the inflow of migrants

from other countries.

Decomposing the internal migration balance by destination type in panel C of Table

1 shows that the majority of net outflows from declining rural municipalities are directed

towards urban areas (column 4). While there are also relevant net outflows to other

rural areas, the outflows towards urban areas account for more than two thirds of the

total net outflows from these municipalities. This trend is almost exclusively driven by

out-migration of individuals under the age of 35 (panel D, column 4), which leads to

faster aging of those declining rural areas. Here the average share of individuals aged

65 or older has increased much stronger in rural areas which experienced population

declines than in other regions (panel E).

Lastly, panel F of Table 1 compares the employment structure in urban and rural

areas. Here rural areas are on average more reliant on employment in the manufacturing

industries, as these industries account for a larger fraction of total employment (26.29%

in 2001) as opposed to urban areas (14.47%). This strong reliance on manufacturing

employment leaves rural areas particularly exposed to changes in labor demand in these

industries, which are tightly linked to industrial robotization.

3 Data:

Robotization:

Data on robotization comes from the International Federation of Robotics (IFR).

The IFR offers a rich industry level data-set on robot stocks and deliveries for many

high income countries. This data, which has become the most widely used data source

when studying robotization, is collected by the IFR through an annual survey of indus-

trial robot suppliers worldwide and covers about 90% of the global market for industrial

7



robots.5 For Austria, country level robotization trends are available starting in 1993,

while a detailed industry level breakdown is available from 2003 onward. Most man-

ufacturing industries (according to the NACE-Rev. 2 classification) are available on

the 2-digit or 3-digit industry level, while several other industries are available at the

1-digit level (see Table A11 in the Online Appendix).6

Figure A2 in the Appendix shows the change in robotization in Austria over the

period 1993 to 2016. During this time period industrial robot density has increased

substantially from 0.597 to 2.532 robots per 1000 workers. By 2003 robot density has

reached approximately 1.047 robots per 1000 workers. Thus the majority of the increase

in robotization falls in the period 2003-2016, for which the IFR data includes a detailed

industry level breakdown of robot stocks for Austria.

Migration-flows:

To investigate the migratory responses to robotization, I use register based data on

migration flows from the Austrian migration statistics. This data contains detailed in-

formation on changes of the municipality of residence within Austria, as well as changes

of residence with other countries. It is compiled by Statistics Austria from the central

residence register, which contains mandatory reports of all Austrian residents on their

primary (and if applicable secondary) place of residence. In Austria, reporting ones

5The IFR data has been introduced into the economic literature in the seminal contribution of

Graetz and Michaels (2018). A detailed survey of the database and other applications can be found

in Klump, Jurkat, and Schneider (2021).

6The industry level IFR data also contains ’unclassified’ robot stocks, which are not accounted

for by the reported industries. For Austria, about 30% of all robots are unclassified, which is very

similar to the proportion of unclassified robots for the US reported in Acemoglu and Restrepo (2020).

I follow Acemoglu and Restrepo (2020) and allocate these unclassified robots to the available industries

according to the proportions of classified robots in the data.
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place of residence to the local authorities is required by law, and therefore the central

residence register contains information on all individuals legally residing in Austria.

The migration statistics covers all changes of the primary residence of all individuals

that have been registered in Austria for at least 90 days. Therefore this data allows to

reliably track the number of individuals that moved their primary residence between

municipality i and municipality j (or moved between municipality i and countries out-

side of Austria) in any year starting in 2002.7

Employment:

To measure the structure of regional employment as well as changes in manufac-

turing employment, I use data from the Austrian Social Security Database (ASSD, see

Zweimüller et al., 2009). The ASSD is a register based database which covers all private

sector employees in Austria, starting in 1975. This data contains a variety of informa-

tion about the individual workers, as well as detailed information about the firms these

workers are employed in. Crucially, the ASSD contains information on the geographic

location of firms, as well as the industry a firm belongs to. This allows for a detailed

measurement of employment by industries on the municipality level.

Demographic structure of the workforce:

To control for the demographic structure of the local working age population, I use

population data from the decennial Austrian census (2001 and 2011) and the register

based labor market statistics (available annually from 2012 onward) from Statistics

7Due to data privacy reasons Statistic Austria only provides municipality level migration flows with

additional information on the type of destination region (according to the urban-rural classification

in Appendix A1), but not on the exact destination municipality. This data was provided as a special

delivery from Statistics Austria.
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Austria. As the labor market statistic is collected from the same administrative register

as the register based census from 2011, these data sources are directly comparable. Since

population data on the level of the Austrian municipalities is not available for years

that lie between the census years 2001 and 2011, population counts for these years have

been linearly interpolated.

4 Research Design:

Measuring regional robot exposure would ideally require detailed firm level data on

robot adoption. Since such data is not available for Austrian firms, I follow Acemoglu

and Restrepo (2020) and Dauth et al. (2021) and predict regional robot exposure from

the industry level robotization data. For this I compute changes in robot density for

any regional unit r as a shift-share variable. The idea of a shift-share research design

is that industry specific shocks affect regions differently, depending on the structure

of their local economy.8 Therefore the local industry structure is interacted with the

industry specific shocks, to predict local robot exposure based on the structure of local

employment:

∆Robotsr,t =
∑
i

Empi,r,t
Empr,t

× ∆Robotsi,t
Empi,t

(1)

In equation 1 the industry specific change in robotization ∆Robotsi,t in industry i

over period t (normalized by overall employment in this industry) is interacted with

8Shift-share research designs are heavily used in the economic literature. Following the influential

work of Bartik (1991) and Autor and Duggan (2003) they have been applied to a wide variety of

questions. Some prominent applications relate to the effects of trade-shocks (e.g. Autor, Dorn, and

Hanson, 2013 or Dauth, Findeisen, and Suedekum, 2014), offshoring (Hummels et al., 2014), routine

biased technological change (Autor and Dorn, 2013) or credit market shocks (Greenstone, Mas, and

Nguyen, 2020). A related literature, following the work of Card (2001), uses shift-share type variables

to predict immigrant inflows.
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the share of industry i in region r’s overall employment (measured at the beginning

of period t). This projects the industry level robotization change in industry i onto

the regional level, while considering the relative importance of industry i for region r’s

overall employment. Local exposure to robotization then computes as the weighted

sum of industry level robotization changes, whereby the region specific employment

shares (which are known in the theoretical literature on shift-share inference as exposure

shares) serve as weights. Calculating ∆Robotsr,t as outlined in equation 1 requires (i)

data on the industry specific robotization shock and (ii) detailed regional data on the

exposure shares. While the industry level robotization data is available from the IFR,

local exposure shares are calculated from the ASSD (see Section 3).

Throughout the analysis this measure of regional robot exposure serves as the main

explanatory variable of interest. To estimate the effect of changes in robot exposure on

manufacturing employment and internal migration flows, I estimate equations of the

form:

∆Yr,t = γ∆Robotsr,t +Xr,tβ + ρr + τt + εr,t (2)

whereby ∆Yr,t denotes the outcome of interest (log-changes in manufacturing em-

ployment or net out-migration-rates), ∆Robotsr,t is predicted robot exposure from equa-

tion 1 and Xr,t is a vector of control variables. The model is estimated as a stacked

difference model, using changes over two time periods 2003-2009 and 2009-2016, which

allows for the inclusion of period fixed effects τt and regional fixed effects ρr. All esti-

mations are weighted by the start-of-period working age population.

Control Variables:

The vector of control variables Xr,t includes several sets of distinct variable types.

The first set of covariates controls for the demographic characteristics of the local pop-

ulation. For this I include the detailed age-sex-education-nationality distribution of the
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local population (measured in the initial year of each panel period to avoid endogenous

contamination).9 The inclusion of the composition of the local population is motivated

by concerns, that regions with different demographic structure are very likely to be

on different trends regarding population changes and migration-flows. Furthermore it

has been shown in recent work by Acemoglu and Restrepo (2022) that the structure

of the workforce (particularly the age composition) has a direct impact on robotiza-

tion trends.10 Therefore this very detailed set of demographic variables is included to

control for this simultaneous impact of the demographic structure on robotization and

migration trends.

In the second step, controls that aim at capturing regional heterogeneity are in-

cluded. These controls include the start-of-period logarithm of the gross regional prod-

uct and the regional unemployment rate (to control for differences in economic perfor-

mance) and the start-of-period share of the population living in urban areas (to control

for different population trends depending on the degree of urbanization).

The next set of covariates controls for other types of labor demand shocks. For

this I include shift-share variables for changes in import- and export-exposure from

9The composition of the local population is included in 68 age-sex-education-nationality cells,

where each cell indicates the size of the respective group in the overall population in 1000 individuals.

The 68 demographic cells are defined by 5 age groups (ages 0-14, 15-34, 35-49, 50-64 and 65 and

above), 2 gender groups (male, female), 4 educational groups (highest level of education completed is

either compulsory schooling, apprenticeship, high-school or university) and 2 nationalities (Austrian

or foreign citizen).

10Acemoglu and Restrepo (2022) document the fact that jobs that are automatable by industrial

robots are predominantly performed by middle aged workers, since these are the workers which mainly

perform routine manual tasks. As aging reduces labor supply from middle aged workers (and thereby

increases their wage rate) the relative price of robots vis-a-vis those workers drops. This makes

robotization more profitable and thus leads to stronger robot adoption in sectors which rely more

heavily on middle aged workers.
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China and the former Eastern Block,11 as well as ICT-capital intensity. As is laid out

in detail by Adao, Kolesár, and Morales (2019) other types of labor demand shocks,

that can be expressed as shift-share type variables have a mechanical correlation with

∆Robotsr,t, since they are constructed from similar exposure shares. Therefore these

control variables have to be included to control for other large scale labor demand shocks

originating in international trade or other forms of automation technologies. Data on

import- and export exposure comes from the UN-Comtrade database, while data on

ICT-intensity is taken from the EU-Klems database.12

By a similar logic I also control for shocks to labor supply originating in migration

from foreign citizens. Following Card (2001), the migrant share in a region is a strong

predictor for migration inflows. To the extent that this migrant share correlates with

the industry exposure shares used in equation 1 to predict regional robot exposure, mi-

gration based labor supply shocks are also mechanically correlated with predicted robot

exposure (see Adao, Kolesár, and Morales, 2019). Therefore I include changes in the

migrant population, differentiated by 4 educational groups. Labor supply related con-

trols are however only included in employment regressions, because migration flows of

non-Austrian citizens are themselves a component of population changes and migration

11This follows the approach of Dauth, Findeisen, and Suedekum (2014) who showed for Germany

that trade with countries of the former Eastern Block is more relevant for the German case. There-

fore the shift-share variables for import- and export-exposure are computed as changes in import- and

export-exposure from China, Bulgaria, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia,

and the succession states of the former USSR - Russian Federation, Belarus, Estonia, Latvia, Lithua-

nia, Moldova, Ukraine, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and

Uzbekistan.

12The Comtrade data, which is only available at the commodity level, has been crosswalked to the

ISIC-Rev. 4/NACE-Rev. 2 classification using the comtradr-package in R. The EU-Klems data comes

from the September 2017 release.
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flows (i.e. the dependent variables in all regressions except employment regressions).

Lastly I control for the regional start-of-period industry structure, to check for the

possibility that regions with different industry structure are on different trends, both

in robotization as well as in changes in employment or migration flows. This is done

in two different ways. Firstly, the share of manufacturing employment is included as

additional control. Secondly, instead of the manufacturing share, a more detailed set

of industry structure controls are included.13

Fixed Effects:

To control for unobserved shocks that influenced all regions equally, all estimations

include a set of period fixed effects. As the observational period ranges from 2003

to 2016, these period fixed effects are of particular importance, as they aim to con-

trol for confounding effects of the Great Recession. Therefore the two panel periods

are defined such that they correspond to a pre-crisis period (2003-2009) and a post-

crisis/recovery period (2009-2016).14 However, as is emphasized in Borusyak, Hull, and

Jaravel (2022), these period fixed effects require some adjustments. Robot adoption

is strongly concentrated within the manufacturing sectors. Therefore most industries

outside of manufacturing experienced zero robotization. In equation 1 this means, that

the regional sum of all exposure shares of sectors with non-zero robot adoption is gen-

13For the detailed industry composition controls I follow Dauth et al. (2021) and include the initial

period employment shares of sub-industries of manufacturing (production of food products, consumer

goods, industrial goods and capital goods), as well as industries outside of manufacturing (construction,

personal services, business services and the public sector).

14As can be seen in Figure A2 in the Appendix robotization in Austria was rather unaffected by the

Great Recession, as the increase in robotization continued rather smoothly. This somewhat mitigates

concerns about a confounding influence of the Great Recession. However the period fixed effects are

included to more thoroughly control for this.
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erally smaller than 1, such that
∑

i
Empi,r
Empr

< 1. As is explained in detail in Borusyak,

Hull, and Jaravel (2022), conventional period fixed effects do not properly isolate within

period variation in shift-share applications with incomplete exposure shares. To correct

this, they recommend to interact the period fixed effects with the regional sum of the

incomplete exposure shares, as only in this case the fixed effects fully absorb between

period variation. Therefore the period fixed effects τt in equation 2 refer to the interac-

tion of conventional period dummies with the regional sum of the incomplete exposure

shares. In OLS estimations the incomplete shares used for the computation of predicted

robot exposure in equation 1 are used, while in 2SLS regressions the lagged exposure

shares used for the computation of the instrument (from equation 3 – see section 4.1)

are used.

Additionally all estimations contain a set of region fixed effects ρr to control for

unobserved regional heterogeneity.

Commuting Zones:

To control for the possibility of spatial spillovers of local robotization shocks, I use

so-called commuting zones (instead of the municipalities themselves) as unit of ob-

servation. Clearly a local shock to a plant in municipality k, does not only influence

employment (and outcomes related to employment) in the same municipality. Rather it

is to be expected that employment in neighboring municipalities will react as well, sim-

ply because some workers who worked in the same plant, and thus are directly affected

by the shock, commuted there from neighboring areas. Also a number of studies have

shown, that local shocks influence employment in other plants in the same local labor

market via agglomeration effects (see for example Gathmann, Helm, and Schönberg

2018 or Helm 2019). To control for these spillover effects more aggregated local labor

markets are often used in the literature to examine the consequences of local shocks.
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The underlying idea is, that aggregated regional units more closely correspond to local

labor markets, and therefore spillovers caused by commuting patterns are less of an

issue than when using the municipalities themselves. While some studies use existing

geographical units, which are usually defined as administrative areas, districts or states,

to approximate local labor markets, I use commuting zones as they are a data driven

way to define local labor markets based on the strength of their commuting ties. Us-

ing commuting zones appears to be less arbitrary than using predefined administrative

areas, and has a straightforward appeal as they are specifically designed to contain a

larger fraction of commuters within their borders. The construction of these commut-

ing zones strictly follows the methodology used for US commuting zones described in

Tolbert and Sizer (1996) and Dorn (2009) (for details see Online Appendix C).15

Standard Errors:

Throughout the analysis I report two types of standard errors, namely conventional

heteroskedasticity robust standard errors, as well as the exposure robust standard errors

from Adao, Kolesár, and Morales (2019) (henceforth referred to as AKM-standard

errors). As is outlined in detail in Adao, Kolesár, and Morales (2019) conventional

standard errors might be unreliable in shift-share settings, as the regression residuals

are likely to be correlated across (potentially distant) regions with similar exposure

shares. To account for this possibility I report both sets of standard errors.16

15The US commuting zones estimated by Tolbert and Sizer (1996) are widely used in studies on

labor market shocks in the US. See for example Autor, Dorn, and Hanson (2013, 2015, 2021), Autor

and Dorn (2013), Acemoglu et al. (2016), or Acemoglu and Restrepo (2020) among others.

16Adao, Kolesár, and Morales (2019) show in their paper that the AKM-standard errors might

be downward biased and thus overreject if the number of industries used to construct the shift-share

variable is too small. Since the IFR-data only includes 26 different industries, which can be used for

the computation of ∆Robotsit, this is a potential concern in this setting. To address this concern, I
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4.1 Identification Strategy:

One major reason for endogeneity concerns in equation 2 is that the adoption of

robots might be correlated with unobserved regional demand shocks which simulta-

neously influence employment trends or internal migration decisions. For example,

negative shocks to the domestic demand for goods produced by industry i might reduce

that industry’s demand for industrial robots. Such demand shocks could be related to

changes in employment or migration flows in areas where industry i is a relevant part of

the local economy. In such a scenario the estimate for γ in equation 2 would no longer

isolate the effect of industrial robotization but would additionally reflect effects arising

from the unobserved demand shock.

Another source for endogeneity concerns relates to the construction of the predicted

robotization measure in equation 1. Here the industry level change in robotization is

assigned to any region r purely via the regional structure of employment. This implic-

itly assumes that all firms in a given industry i are equally likely to adopt robots. Any

violation of this assumption leads to a measurement error in the explanatory variable

which, to the degree that it is systematically related to unobserved regional character-

istics, would lead to a bias in the estimate for γ. Consider for example the presence

of regional agglomeration effects that incentivise high performing firms to settle in a

certain region. If high performing firms are also more likely to adopt industrial robots

(as recent findings in Bonfiglioli et al., 2020 and Koch, Manuylov, and Smolka, 2021

suggest) the predicted robotization measure in equation 1 would have a measurement

error that is systematically related to this unobserved agglomeration effect.

To address these concerns I follow Acemoglu and Restrepo (2020) and Dauth et al.

apply a modification to the computation of these standard errors that results in more conservative

estimates. The details and performance of this modification are discussed in Online Appendix D.
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(2021) and construct an instrumental variable that leverages exogenous variation in

robot adoption from other high-income countries. Since industry level robotization

trends in other high-income countries are unrelated to unobserved regional characteris-

tics in any Austrian region (like regional demand shocks or agglomeration economies),

this approach isolates changes in the supply of robots which is driven by advances

in the technological frontier. Similarly to predicted robot exposure in equation 1, this

instrumental variable is constructed as a shift-share variable, where industry level robo-

tization changes in other high-income countries are interacted with regional exposure

shares.

∆RobotsIVr,t =
∑
i

Empi,r,t−15

Empr,t−15

×
∆RobotsOtherCountries

i,t

Empi,t−15

(3)

To further remove the instrumental variable in equation 3 from the predicted robot

exposure measure in equation 1 the exposure shares used to construct the instrument

are lagged by 15-years.

As has been shown in recent work by Adao, Kolesár, and Morales (2019) and

Borusyak, Hull, and Jaravel (2022), the validity of this instrumental variable hinges on

the exogeneity of the industry level robotization shocks occurring in other high-income

countries. The underlying identifying assumption thus is that industry level roboti-

zation trends in other high-income countries ∆RobotsOtherCountries
i,t are quasi-randomly

assigned with respect to unobserved regional characteristics in Austria. In the examples

described above this means that the robotization trends in other high income countries

must not have a direct impact on region specific demand shocks in Austria or the loca-

tion decisions of robotizing Austrian firms. As is shown in Borusyak, Hull, and Jaravel

(2022) this exogeneity of the robotization shocks is both necessary and sufficient for

the instrumental variable to be valid. Hence the regional exposure shares (i.e. the
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lagged industry structure) are allowed to be endogenous.17 To construct these roboti-

zation shocks occuring in other high income countries I use industry level robotization

changes in Canada, Denmark, Finland, France, Italy, Mexico, Norway, Spain, Sweden,

the United Kingdom and the United States.18

While the exogeneity of the robotization shocks, which essentially mirrors a standard

exclusion restriction, cannot be tested directly, Borusyak, Hull, and Jaravel (2022) pro-

pose several plausibility tests. These tests aim to asses the plausibility of quasi-random

shock assignment by assessing whether the robotization shocks themselves and the con-

structed instrument are balanced (i.e. not systematically related) to pre-determined

characteristics in Austria. The following two subsections present these balance tests on

the industry and on the regional level.

Industry Level Balance Tests

To asses the quasi-random assignment of the industry level shocks used to construct

the instrument, Table 2 presents industry level balance tests. These tests are conducted

by estimating the following industry level regression:

Y Austria
i,t = β∆RobotsOtherCountries

i,t + τt + εi,t (4)

17In a related paper Goldsmith-Pinkham, Paul, and Swift (2020) argue that the exogeneity of the

exposure shares is also a sufficient condition for the validity of the instrumental variable. Borusyak,

Hull, and Jaravel (2022) however show, that the orthogonality of the shocks is both sufficient and

necessary and that in the Goldsmith-Pinkham, Paul, and Swift (2020) setting of exogenous regional

exposure shares, shock exogeneity is implicitly fulfilled due to the exogenous (i.e. quasi random)

assignment of the regional exposure shares.

18Canada, Mexico and the United States are not available as separate countries in the IFR-data,

but are rather aggregated to a single region (North America).
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where start-of-period values of some observed industry level characteristic in Austria

Y Austria
i,t are regressed on the industry level robotization changes in other countries

∆RobotsOtherCountries
i,t which are also used in equation 3 to construct the regional level

instrumental variable. To isolate within-period variation of the robotization shocks, the

estimations control for period fixed effects. The regression in equation 4 is estimated

separately for each of the start-of-period characteristics of industries in Austria Y Austria
i,t .

These balance variables aim to test for the balance of the shocks with respect to the

industry level composition of the workforce, as well as other industry characteristics

related to productivity, capital intensity and the average wage rate. Data on industry

level workforce characteristics has been calculated from the ASSD, while all remaining

indicators have been calculated from EU-Klems data.19

The results of the industry level balance tests in Table 2 show that industry level

changes in robot adoption in the countries used to construct the instrument are sig-

nificantly correlated with the age composition of the workforce in Austria, while the

estimates for all other balance variables are insignificant. The measure for the age com-

position used in this estimation is computed analogously to Acemoglu and Restrepo

(2022) who use the ratio of old to middle aged workers to show that aging of the work-

force (which would be equivalent to an increase in this ratio) leads to increases in robot

adoption. The significant and negative estimate of −0.854 for this balance test indi-

cates that greater robot adoption in the other high income countries predict a stronger

reliance on middle aged workers in Austrian industries.20

19Because the ASSD does not contain any information on the skill level of workers, no industry level

balance variables related to the skill composition of the workforce are available. Similarly EU-Klems

only includes such information up to 2005. Therefore balance tests related to the skill composition

cannot be performed at the industry level and are postponed to regional level tests.

20This correlation likely stems from (i) the age structure having an influence on robotization changes

(as shown by Acemoglu and Restrepo, 2022) and (ii) industry level age structures being correlated
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Table 2: Industry level balance tests for instrumental variable:

Balance variable Coef. SE
(1) (2)

Start-of-period ratio of old workers to middle aged workers -0.854 (0.422)**

Start-of-period share of blue collar workers 1.467 (1.659)

Start-of-period labor productivity: 0.108 (0.204)

Start-of-period capital/labor ratio: -0.515 (1.034)

Start-of-period ICT-capital/capital stock -0.032 (0.055)

Start-of-period log(avg. hourly real wage) 0.018 (0.019)

Industries: 26
Time Periods: 2
Industry-Period Shocks: 52

Notes: * < 0.10, ** < 0.05, *** < 0.01. This Table shows industry level regressions of the respective balance variables on
the industry level robotization shocks ∆RobotsOtherCountries

i,t used in equation 3 to construct the instrumental variable.
The industry level robotization shocks are summed up over all countries and are then normalized to have zero-mean and
unit variance. The ratio of old workers to middle aged workers is constructed by dividing industry level employment
of workers aged 50 or older, by employment of workers age 35 to 49. Industry level data on employment by age and
worker type (blue collar) is taken from the ASSD data, while all remaining industry level balance variables are taken
from the EU-KLEMS September 2017 Release (July 2018 Update). All regressions control for period fixed effects and
are weighted by industry size. Heteroskedasticity robust standard errors are reported in brackets.

In sum these industry level balance tests in Table 2 show that the shocks used

to compute the instrument are reasonably balanced, with the exception of the age

composition of the workforce. This suggests that it is crucial to control for workforce

characteristics in the regional level estimations, as the exogeneity of the robotization

shocks (and thus the exogeneity of the entire instrument) is likely only fulfilled when

conditioning on demographic characteristics of the workforce.

Regional Level Balance Tests

Table 3 presents estimation results for regional level balance tests. For this I follow

the recommendations in Borusyak, Hull, and Jaravel (2022) and Goldsmith-Pinkham,

across countries. Table A5 in the Appendix shows that this is indeed the case, as the industry level

age structure of the workforce in Austria is significantly correlated with the age structures in countries

used to construct the instrument.
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Paul, and Swift (2020) and regress several observed regional covariates Y Austria
r,t directly

on the instrument ∆RobotsIVr,t :

Y Austria
r,t = β∆RobotsIVr,t + τt + εi,t (5)

While the industry level balance tests address the exogeneity of the robotization

shocks themselves, these regional tests aim to assess the plausibility of the exogeneity

of the actual instrumental variable with respect to several regional balance variables.

These regional balance variables Y Austria
r,t are measured at the beginning of each panel

period and are thus pre-determined with respect to the robotization shocks occurring

during the following panel period. Because the population data from the Austrian

census includes more detailed information on certain characteristics of the working age

population than is available at the industry level, these regional level balance tests allow

to include more detailed balance variables relating to the composition of the working

age population. Therefore these regional balance tests can also examine balance of the

instrument with respect to the skill-distribution of the working age population, as well

as the migrant share. Additionally the same measure for the age-structure is included

on the regional level, as was previously tested on the industry level (i.e. the ratio of old

to middle aged workers from Acemoglu and Restrepo, 2022).

Following the recommendation in Borusyak, Hull, and Jaravel (2022) the estimates

in column 1 control only for period fixed effects to asses the within period variation of

the instrument. Here the different standard error definitions lead to different conclu-

sions. While the shift-share robust AKM-standard errors suggest that the instrument is

balanced (i.e. not significantly related to any of the pre-determined balance variables),

the White-heteroskedasticity robust standard errors suggest that the instrument is un-

balanced with respect to several of the balance variables. In particular the estimates
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Table 3: Regional balance tests for instrumental variable:

Only period FE: Additional controls:

Balance variable Coef. SE Coef. SE
(1) (2) (3) (4)

Start-of-period share of manufacturing employment 0.0153 (0.0046)***
[0.0339]

Start-of-period ratio of old workers to middle aged workers -0.0334 (0.0253) 0.0052 (0.0022)**
[0.2668] [0.0225]

Start-of-period % of high education population: 0.0018 (0.005) 0.0011 (0.001)
[0.0506] [0.0069]

Start-of-period % of medium education population: -0.0002 (0.0052) 0.0002 (0.0006)
[0.0565] [0.0035]

Start-of-period % of low education population: -0.0345 (0.0126)*** -0.0013 (0.0016)
[0.1426] [0.0104]

Start-of-period % of foreign born population 0.0008 (0.0047) 0.0012 (0.0011)
[0.0777] [0.0108]

Start-of-period log(gross regional product) -0.0211 (0.3073) -0.0023 (0.0053)
[4.0293] [0.0154]

Start-of-period log(unemployment rate) 0.1531 (0.0503)*** 0.0225 (0.0154)
[0.3806] [0.0555]

Period Fixed Effects x x
Region Fixed Effects x
Share of Manufacturing Employment x

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and shift-share
robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of observation are
158 clustered commuting zones (for details see Online Appendix C). Period fixed effects are interacted with the sum of
exposure shares used to construct the instrument. All regressions are weighted by start-of-period working age population.

suggest that the instrument predicts a higher initial period manufacturing share and a

lower share of low-skilled workers.

Since it is to be expected that the instrument is correlated with a higher share of

manufacturing employment (as robotization is heavily concentrated within manufac-

turing), column 3 presents balance tests, where regional fixed effects and the share

of manufacturing in total employment are included as additional controls. These es-

timations in column 3 suggest that the instrument is unbalanced with respect to the

age-structure of the workforce (as in the industry level balance tests in Table 2). This

unbalance however is only indicated by the White-robust standard errors, while the
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AKM-standard errors again suggest that the instrument is well balanced. Apart from

this possible imbalance with respect to the age-structure there is no significant rela-

tion between the instrument and any other balance variable beyond what is explained

by the industry structure and regional fixed effects. Hence, while the shift-share ro-

bust AKM-standard errors suggest that the instrument is balanced, conventional robust

standard errors suggest that the assumption of quasi-random assignment of the robo-

tization shocks holds only conditional on the age-composition of the workforce and the

industry structure.

5 Results:

Manufacturing Employment:

Table 4 shows the estimation results for the log-change in manufacturing employ-

ment. Since the balance tests in Section 4.1 indicate that the exogeneity of the in-

strument likely only holds conditional on the age-distribution of the workforce, all

estimations include the detailed set of demographic controls as well as regional and

period fixed effects.

Overall the estimations in Table 4 show a robust negative effect of industrial robo-

tization on manufacturing employment in all specifications. Including only the baseline

set of controls in column 1 of Table 4 results in precisely estimated negative coeffi-

cients of −3.921 in the OLS regression and −5.984 in the 2SLS regression (column 1

of Table 4). Contrasting those two estimates suggest that the OLS estimate is slightly

upward biased. Such an upward bias is consistent with an unobserved positive demand

shock that simultaneously increases robot adoption and employment. This pattern

could also be caused by the presence of agglomeration economies that (i) incentivise

robotizing firms to settle in certain regions, (ii) increases those firms productivity via
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Table 4: Robotization and Manufacturing Employment (2003-2016)

Dependent Variable: ∆ log(Manufacturing Employment) ×100

(1) (2) (3) (4) (5) (6)

OLS:
∆ Robots -3.921 -3.711 -4.932 -4.137 -2.743 -0.885

(1.106)*** (1.177)*** (1.226)*** (1.297)*** (1.254)** (1.333)
[0.337]*** [0.45]*** [0.452]*** [0.476]*** [0.413]*** [0.438]**

2SLS:
∆ Robots -5.984 -6.254 -6.458 -4.006 -3.599 -4.343

(2.079)*** (2.266)*** (2.282)*** (2.311)* (1.858)* (1.683)**
[0.713]*** [0.626]*** [0.604]*** [0.495]*** [0.394]*** [0.299]***

First Stage Results: 0.011 0.011 0.011 0.011 0.011 0.011
(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***
[0.0004]*** [0.0003]*** [0.0004]*** [0.0004]*** [0.0004]*** [0.0003]***

First Stage F-Statistic: 43.59 41.71 39.83 33.68 33.24 32.78

Period Fixed Effects x x x x x x
Region Fixed Effects x x x x x x
Demographic Controls x x x x x x
Regional Characteristics x x x x x
Labor Supply Shifts x x x x
Labor Demand Shifts x x x
Manufacturing Share x
Detailed Industry Structure x

Commuting Zones 158 158 158 158 158 158
Periods 2 2 2 2 2 2
Observations 316 316 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets and shift-
share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of observation
are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set of region and
period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares used to construct
the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-period structure of
the local workforce in 64 age-gender-education-nationality cells (demographic controls relating to the age-group 0-14 are
not included in employment regressions). Regional characteristics control for the start-of-period logarithm of the gross
regional product and the unemployment rate, as well as the start-of-period degree of urbanization. Shift-Share controls
are included as the changes in import- and export-exposure and ICT-intensity (labor demand shifts) and changes in the
migrant population differentiated by 4 educational groups (labor supply shifts). The detailed industry structure controls
include start-of-period employment shares of several sub-industries of manufacturing (production of food products,
consumer goods, industrial goods and capital goods), as well as industries outside of manufacturing (construction,
personal services and business services) and the public sector. All regressions are weighted by start-of-period working
age population.

25



agglomeration effects and thereby (iii) have a positive impact on employment. In both

cases the OLS estimate would absorb the positive impact of the unobserved demand

shock/agglomeration effect resulting in an upward bias of the estimate. The fact that

2SLS shows a stronger negative estimate in all specifications suggest that the instru-

mentation strategy is able to address these endogeneity concerns.

Including further control variables in columns 2 to 6 of Table 4 has only a moderate

impact on the size of the 2SLS estimate, which stays relatively stable over all following

specifications. Still the inclusion of controls for other types of labor demand shocks

(trade and ICT exposure) in column 4 somewhat reduces the size of the estimated

effect. In the full specification including all available control variables in column 6

of Table 4 the 2SLS estimation suggests a negative effect of −4.34 suggesting that

one more additional robot per thousand workers reduces manufacturing employment

by about 4.3 percent. Between 2003 and 2016 robot density in Austria increased by

around 1.49 additional robots per 1000 workers (see Appendix Figure A2). Hence the

estimated effect implies that robotization has decreased manufacturing employment in

Austria by about 6.47% during this timeframe. To get a sense of the magnitude of

this effect Panel A of Figure A3 in the Appendix presents the counterfactual evolution

of the manufacturing share when holding robotization constant. During 2003 to 2016

the manufacturing share in Austria declined from around 20.96% to 18.14%. Holding

robotization constant at its 2003 level shows that in the absence of robotization the

manufacturing share in 2016 would only have declined to 19.09% (i.e. by about 0.95

percentage points less). Robotization thus explains around one third of the decline in

the manufacturing share.

This effect on manufacturing employment however need not be associated with re-

ductions in overall employment. The literature on labor market effects of automation

technologies suggests the possibility of positive employment spillovers of automation
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technologies to non-manufacturing industries which would mitigate or even offset em-

ployment losses in manufacturing. As is outlined in the theoretical model of Autor

and Dorn (2013), automation technology driven productivity gains in manufacturing

under certain conditions have the potential to raise aggregate demand (and thereby

also employment) in the service sector. For the specific case of industrial robotization

Dauth et al. (2021) have documented such spillover effects for Germany. While they do

find negative employment effects of robotization in the manufacturing industries, these

effects are fully offset by employment growth in the non-manufacturing industries. This

possibility of spillover effects to non-manufacturing employment is investigated in Panel

A of Table A1 in the Appendix. Here the estimation for non-manufacturing employ-

ment results in a small and insignificant estimate of −0.031 (column 2 of Table A1),

suggesting that no employment spillovers to non-manufacturing took place. Similarly,

distinguishing between blue-collar and white-collar occupations in columns 3 and 4

shows that the negative employment effect is exclusively concentrated on blue-collar

employment.

To further investigate the mechanisms of employment adjustment to the roboti-

zation shock, panel B of Table A1 repeats the employment regressions from panel A

using the percentage change in employment (instead of the log-change) as dependent

variable. Panels C and D then decompose this effect on the percentage change into the

respective contributions of separations and new hirings.21 These estimates in column

1 of Table A1 show that the negative employment effect in the manufacturing indus-

tries is exclusively driven by a reduction in new contracts (panel D) while separations

are significantly reduced (panel C). Robotization thus even increased job stability for

21This decomposition uses the fact, that the percentage change in employment can be written

as Empt=2−Empt=1

Empt=1
= Hirings−Separations

Empt=1
. Unfortunately the ASSD data does not allow to further

distinguish between voluntary separations and involuntary job loss.
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incumbent manufacturing workers. The reduction in new hirings however strongly dom-

inates the reduction in separations, leading to the overall negative effect on employment

in the manufacturing sector. This result suggests that the burden of the robotization

shock primarily falls on individuals seeking to enter new employment, rather than dis-

placing incumbent workers. This result is very similar to results for the German case

in Dauth et al. (2021) who also find that the majority of the disemployment effect in

manufacturing falls on non-incumbent workers.

Table A2 in the Appendix presents estimation results for the effect on manufactur-

ing employment decomposed by age-groups. Here the results show, that the majority

of the shock incidence (41% of the effect on manufacturing employment and 46% of

the effect on blue-collar employment) falls on younger workers bellow the age of 35.

The robotization shock thus particularly hampers the employment prospect of young

workers, a group that is known in the literature to be more geographically mobile in

response to labor demand shocks (see for example Bound and Holzer, 2000).

Internal Migration & Rural Depopulation:

To examine whether these disruptions in labor demand caused by industrial robots

have led to increased out-migration, Table 5 presents estimations of the effect of robo-

tization on net out-migration rates. For any period t that spans the years j = 1, ..., J

this measure is constructed as:

∑J
j=1 Net Outflowj

Populationj=1

=

∑J
j=1(Outflowj − Inflowj)

Populationj=1

(6)

Hence net out-migration rates are calculated by subtracting migration-inflows from

migration-outflows, and summing up over all years that make up the panel period. The

measure is then normalized by the initial year working age population to arrive at a

relative measure of net out-migration flows.
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Table 5: Robotization and Internal Migration (2003-2016)

Dependent Variable: Net-outmigration-rate ×100

(1) (2) (4) (5) (6)

OLS:
∆ Robots 0.22 0.203 0.261 0.229 0.155

(0.116)* (0.13) (0.15)* (0.15) (0.165)
[0.049]*** [0.046]*** [0.042]*** [0.042]*** [0.043]***

2SLS:
∆ Robots 0.833 1.173 1.078 1.105 1.055

(0.353)** (0.459)** (0.356)*** (0.362)*** (0.323)***
[0.064]*** [0.073]*** [0.066]*** [0.067]*** [0.071]***

First Stage Results: 0.011 0.011 0.011 0.011 0.011
(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***
[0.0003]*** [0.0003]*** [0.0003]*** [0.0003]*** [0.0002]***

First Stage F-Statistic: 37.09 34.58 27.94 27.58 29.77

Period Fixed Effects x x x x x
Region Fixed Effects x x x x x
Demographic Controls x x x x x
Regional Characteristics x x x x
Labor Demand Shifts x x x
Manufacturing Share x
Detailed Industry Structure x

Commuting Zones 158 158 158 158 158
Periods 2 2 2 2 2
Observations 316 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets and shift-
share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of observation
are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set of region and
period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares used to construct
the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-period structure of
the local population in 68 age-gender-education-nationality cells. Regional characteristics control for the start-of-period
logarithm of the gross regional product and the unemployment rate, as well as the start-of-period degree of urbanization.
Labor Demand Shifts include changes in import- and export-exposure and ICT-intensity. The detailed industry structure
controls include start-of-period employment shares of several sub-industries of manufacturing (production of food prod-
ucts, consumer goods, industrial goods and capital goods), as well as industries outside of manufacturing (construction,
personal services and business services) and the public sector. All regressions are weighted by start-of-period working
age population.
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The estimation results for the migratory response in Table 5 show that robotization

has lead to an increase in net out-migration rates during 2003-2016. Here the full

specification in column 5 suggests, that one more industrial robot per 1000 workers leads

to net out-migration flows of around 1.1% of the start-of-period working age population.

This effect is robust over all specifications and statistically highly significant in both

standard error definitions.

Comparing the results for the OLS and 2SLS estimations shows that the 2SLS point

estimates are drastically larger than the OLS estimates. This picture is consistent with

recent findings in Borusyak, Dix-Carneiro, and Kovak (2022) who show that the OLS-

estimates from migration regressions are (at times severely) biased towards zero when

shocks between origin and destination regions are correlated. The sizable difference

between the OLS and 2SLS estimates suggests that the instrumentation strategy is

able to successfully address this issue, as the 2SLS estimation results in a rather large

estimated effect.22

While the results in Table 5 confirm that robotization shocks lead to out-migration

in a similar fashion as is firmly established for other types of labor demand shocks,

these results remain silent about the direction of these internal migration flows. To lay

a specific focus on the question whether robotization causes migration flows directed

from rural to urban areas, and thereby contributes to rural depopulation, I use the fact

that the data on net out-migration rates used in Table 5 contains detailed information

on the municipality of origin, as well as the destination. As any commuting zone may

consist of both urban and rural areas (see Online Appendix C), the net outflow from

22Even if the instrumentation strategy would not be able to fully address this problem, the estimated

effect in column 6 of Table 5 would be a lower bound of the true migration response, as Borusyak,

Dix-Carneiro, and Kovak (2022) show that a correlation between shocks in origin and destination

regions would always result in an attenuation of the estimate towards zero.
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any commuting zone can be decomposed into the respective contributions of rural and

urban areas:

∑J
j=1 Net Outflowj

Populationj=1

=

∑J
j=1 Net OutflowRural

j

Populationj=1

+

∑J
j=1 Net OutflowUrban

j

Populationj=1

(7)

Using the available information on the destination type (urban, rural or abroad),

the net outflows from rural areas can be further decomposed by destination:

∑J
j=1 Net OutflowRural

j

Populationj=1

=

∑J
j=1 Net OutflowRural→Urban

j

Populationj=1

+

∑J
j=1 Net OutflowRural→Rural

j

Populationj=1

+

∑J
j=1 Net OutflowRural→Abroad

j

Populationj=1


Internal

 External

(8)

Hence the net out-migration rate from all rural municipalities in any commuting zone

is decomposed into flows directed towards urban or rural areas (internal migration) and

flows with other countries (external migration).23

Table 6 applies this decomposition to the net out-migration rates from rural areas.

Here column 1 shows the effect of industrial robots on all rural net outflows. This effect

(0.953) is on a very similar magnitude as when net outflows from both rural and urban

23While the migration flow data contains detailed information on the municipality of origin, it does

not contain information on the exact municipality of destination. Rather the type of destination is

provided (as defined in the urban-rural-classification from Statistics Austria in Appendix A1). While

this does not allow a detailed reconstruction of the destination municipality, it allows for a distinction

between rural and urban destinations.
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Table 6: Robotization and net out-migration in Rural Areas (2003-2016)

Total External Internal

All Rural to Urban Rural to Rural
(1) (2) (3) (4) (5)

OLS:
∆ Robots 0.141 -0.001 0.142 0.057 0.085

(0.164) (0.024) (0.181) (0.09) (0.103)
[0.037]*** [0.005] [0.041]*** [0.02]*** [0.025]***

2SLS:
∆ Robots 0.953 -0.067 1.02 0.565 0.455

(0.307)*** (0.048) (0.342)*** (0.162)*** (0.202)**
[0.061]*** [0.009]*** [0.069]*** [0.031]*** [0.042]***

First-Stage F: 29.77 29.77 29.77 29.77 29.77

Period Fixed Effects x x x x x
Region Fixed Effects x x x x x
Demographic Controls x x x x x
Regional Characteristics x x x x x
Labor Demand Shifts x x x x x
Detailed Industry Structure x x x x x

Commuting Zones 158 158 158 158 158
Periods 2 2 2 2 2
Observations 316 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and
shift-share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of
observation are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set
of region and period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares
used to construct the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-
period structure of the local population in 68 age-gender-education-nationality cells. Regional characteristics control for
the start-of-period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period
degree of urbanization. Labor Demand Shifts include changes in import- and export-exposure and ICT-intensity. The
detailed industry structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods and capital goods), as well as industries outside of
manufacturing (construction, personal services and business services) and the public sector. All regressions are weighted
by start-of-period working age population.

areas are considered (1.055 - Table 5, column 6). Decomposing this effect into the part

explained by external migration (column 2) and internal migration (column 3) makes

clear that increases in net out-migration flows are exclusively driven by increases in

internal net out-migration. Decomposing these internal migration flows into rural-to-

urban and rural-to-rural flows in columns 4 and 5 of Table 6 reveals that a large part

of this effect stems from rural-to-urban migration. While one more additional robot

per 1000 workers increases internal out-migration rates from rural areas by around 1%,

approximately 0.57% of this increase are accounted for by outflows that are directed
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towards urban areas. This effect for rural-to-urban net migration rates is precisely

estimated and significant at the 1%-level in both standard error definitions. This co-

efficient in column 4 of Table 6 provides direct evidence that robotization contributes

to population declines in rural areas by specifically increasing rural-to-urban internal

migration flows.

Column 5 of Table 6 also provides evidence that robotization has an increasing effect

on rural-ro-rural migration flows. Here the estimation suggests a positive effect of 0.455.

This effect of robotization on rural-to-rural migration flows is somewhat smaller than

the effect on rural-to-urban migration flows, highlighting that the increase in net out-

migration rates from rural areas strongly operates through rural-to-urban migration.24

Since the dependent variables used in the estimations shown in Table 6 are computed

by subtracting in-migration-flows from out-migration-flows (to arrive at the desired net

out-migration measure in equation 6) it is interesting whether the increase in rural-

to-urban net out-migration stems from an increase in out-migration flows, or rather

a decrease in in-migration-flows. To answer this question Table 7 presents separate

estimations on those two components of net out-migration rates. Comparing columns

2 and 3 of Table 7 shows that the increase in net out-migration rates is exclusively

driven by an increase in out-migration (column 2), while the estimate for the effect

of robotization on in-migration is small and statistically insignificant in both standard

error definitions.

24The classification into rural and urban areas used in Table 6 is performed according to the urban-

rural-classification from Statistik Austria (see Appendix Figure A1). This classification distinguishes

between three broad categories (urban centers, regional centers and rural areas), each being comprised

of several subcategories. In Table 6 the intermediate category ’regional centers’ is classified as rural

area. To check whether this choice affects the results, Table A4 in the Appendix presents estimates,

where ’regional centers’ are included in urban areas. The estimates in Table A4 show, that the results

are unaffected by this choice.
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Table 7: In-migration and out-migration in Rural Areas (2003-2016):

Net Out-Migration Out-migration In-migration

(1) (2) (3)

OLS:
∆ Robots 0.057 0.03 -0.027

(0.09) (0.099) (0.062)
[0.02]*** [0.021] [0.015]*

2SLS:
∆ Robots 0.565 0.586 0.021

(0.162)*** (0.169)*** (0.109)
[0.031]*** [0.034]*** [0.021]

First-Stage F: 29.77 29.77 29.77

Period Fixed Effects x x x
Region Fixed Effects x x x
Demographic Controls x x x
Regional Characteristics x x x
Labor Demand Shifts x x x
Detailed Industry Structure x x x

Commuting Zones 158 158 158
Periods 2 2 2
Observations 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and
shift-share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of
observation are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set
of region and period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares
used to construct the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-
period structure of the local population in 68 age-gender-education-nationality cells. Regional characteristics control for
the start-of-period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period
degree of urbanization. Labor Demand Shifts include changes in import- and export-exposure and ICT-intensity. The
detailed industry structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods and capital goods), as well as industries outside of
manufacturing (construction, personal services and business services) and the public sector. All regressions are weighted
by start-of-period working age population.

Taken together the results in tables 6 and 7 clearly show that robotization has

increased migration flows from rural to urban areas. As this specific type of internal

migration flow greatly contributes to population declines in many rural areas, these

results show that robotization based labor demand disruptions have contributed to

rural depopulation in Austria between 2003 and 2016.

To benchmark the magnitude of this effect Panel B of Figure A3 in the Appendix

presents a counterfactual calculation, where robotization is held constant at its 2003

level. This Figure shows that between 2003 and 2016 rural areas in Austria lost around
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3.62% of their 2003 working age population through rural-to-urban net outflows. In the

absence of robotization this number drops to around 2.78%. Increases in robotization

thus explain around one fourth of all rural-to-urban migration flows during the period

2003 to 2016.

5.1 Robustness Checks:

Pre-Trend Tests

To test whether the results in tables 4 to 7 are indeed driven by exogenous changes

in the robotization shocks used to construct the instrument rather than by pre-trends

in the outcome variables, Table 8 presents pre-trend tests. For these tests changes in

the outcome variables between different pre-periods during 1991 and 2003 are regressed

on the instrument for 2003 to 2016.

The pre-trend test for the log-change in manufacturing employment is presented

in panel A of Table 8. Because the migration flow data used for the computation

of net out-migration rates used in tables 5 to 7 are only available starting in 2002,

these pre-trend tests can not be performed using migration-flow data. To asses the

presence of pre-trends in internal migration, I therefore rely on an alternative measure

for migration responses. For this I use the log-change in working age population counts

(panel B) and the log-change in the rural working age population (panel C).25 Because

25In the literature on migratory responses to local labor demand shocks the log-change in working

age population counts is frequently used as primary measure for migration flows (especially when

more detailed data on migration in- and outflows is not available). Table A3 in the Appendix shows,

that using the log-change in working age population counts to approximate migration responses yields

similar results as when using net out-migration rates (as in Table 5). Consistent with previous results,

these estimations suggest that robotization leads to significant decreases in the size of the working age

population, both overall (Table A3, panel A) and when focusing only on rural areas (panel B).
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these population counts are taken from the Austrian decennial census, pre-period data

points are only available for the years 1991 and 2001. Therefore the pre-trend tests for

log-changes in population related variables in columns 1 to 3 of Table 8 contain linearly

interpolated population counts for the years 1997 and 2003. To be sure that the results

are not driven by the linear interpolation of the population data, column 4 presents an

additional pre-trend test which only relies on data from census years.

All pre-trend tests are conducted in two variations. Firstly I regress pre-period

changes on the instrumental variable, controlling only for period fixed effects. Secondly

I include all available control variables. Here it is important to note, that since the

pre-period changes do not vary across the two panel periods, regional fixed effects can

not be included in pre-trend tests including a full set of controls.

The estimation results for the pre-trend tests in Table 8 (panel B) suggest the pres-

ence of slightly negative pre-trends in the log-change of the working age population

in the pre-periods 1991-1997 (column 1) and 1991-2001 (column 4). These pre-trends

are however only significant using the conventional heteroskedasticity robust standard

errors, while the shift-share-robust AKM-standard errors suggest that these pre-trends

are statistically insignificant. Significant pre-trends in the log-change of the working

age population are potentially concerning, as they indicate that regions with higher

values for the instrument were on a negative population trend prior to the treatment.

Conditioning on all available controls however reduces the estimates in size and renders

these pre-trends statistically insignificant. All remaining pre-trend tests for log-changes

in manufacturing employment (panel A) and log-changes in the rural working age pop-

ulation (panel C) result in insignificant estimates, indicating parallel pre-trends.

In sum the pre-trend tests in Table 8 are reassuring, as they indicate parallel pre-

trends in all pre-periods. Only in the log-change of the working age population in panel

B of Table 8 do these parallel pre-trends hold only conditionally on the available control
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Table 8: Pre-trend tests

1991-1997 1997-2003 1991-2003 1991-2001

(1) (2) (3) (4)

Panel A: Dependent Variable: Pre-Trend for ∆ log(manufacturing employment)

Control only for period FE -0.0038 0.0031 -0.0007
(0.0074) (0.0094) (0.0132)
[0.1288] [0.1247] [0.2534]

Full controls 0.0054 -0.0001 0.0053
(0.0092) (0.0084) (0.0103)
[0.0103] [0.0085] [0.0094]

Panel B: Dependent Variable: Pre-Trend for ∆ log(working-age population)

Control only for period FE -0.0027 -0.001 -0.0037 -0.0043
(0.0012)** (0.0014) (0.0022) (0.0019)**

[0.004] [0.0118] [0.0156] [0.0067]

Full controls -0.0007 0 -0.0007 -0.001
(0.0014) (0.0014) (0.0027) (0.0023)
[0.0011] [0.001] [0.002] [0.0018]

Panel C: Dependent Variable: Pre-Trend for ∆ log(rural working-age population)

Control only for period FE -0.0025 -0.0017 -0.0042 -0.004
(0.002) (0.0019) (0.004) (0.0033)
[0.027] [0.0296] [0.0566] [0.044]

Full controls 0.0006 0.0011 0.0018 0.0012
(0.0013) (0.0013) (0.0026) (0.0022)
[0.001] [0.001] [0.0019] [0.0017]

Commuting Zones 158 158 158 158
Periods 2 2 2 2
Observations 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and shift-share
robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of observation are
158 clustered commuting zones (for details see Online Appendix C). Period fixed effects are interacted with the sum of
exposure shares used to construct the explanatory variable (OLS) or the instrument (2SLS). Since the pre-trend variables
do not vary between time periods, regional fixed effects are omitted in regressions including a full set of controls. All
regressions are weighted by start-of-period working age population.
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variables, while pre-trends for the log-changes in manufacturing employment and rural

working age population counts are also parallel in less rigorous specifications.

Alternative Instrumental Variable

Another potential concern for the validity of the instrumental variable stems from

possible correlations between industry level robot adoption between subgroups of coun-

tries that are caused by (potentially endogenous) factors other than increased supply

of robots due to technological progress. Since some of the countries used to construct

the instrument share a common currency, and thus a common monetary policy with

Austria, simultaneous effects of monetary policy on investment in robots and outcome

variables (i.e. changes in manufacturing employment or migration behavior) therefore

are a source of concern.26 If changes in monetary policy, which rather prominently

took place during the sample period, influence investment decisions in industrial robots

specifically in certain industries, this might lead to correlations between robotization

shocks in Austria and other member states of the European Monetary Union, that is

not driven by changes in the supply of robots, and thus does not represent increased

availability of industrial robots due to technological progress. To the degree that such

changes in monetary policy influence the outcome variables this might violate the ex-

clusion restriction. In principle the period fixed effects are able to deal with such a

problem, if such monetary policy effects are homogeneous across regions. If changes in

monetary policy however affect some industries more strongly than others, this might

introduce regional heterogeneity in this effect, which might not be captured by period

fixed effects. To asses whether the results in Tables 4 to 6 are influenced by such

contamination of the instrumental variable Table A6 in the Appendix presents results

26The instrument is constructed from industry level robotization changes in Canada, Denmark,

Finland, France, Italy, Mexico, Norway, Spain, Sweden, the United Kingdom and the United States.
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for an alternative computation of the instrument for which only robotization changes

from countries outside the European Monetary Union are used. Comparing the results

for the baseline instrument in column 2 of Table A6 to the results for the alternative

instrument in column 3 of Table A6 shows that all results are robust to the exclusion

of these countries in the computation of the instrument.

Commuting Zone Definitions

As mentioned in section 4 and explained in detail in Online Appendix C, I use

clustered commuting zones as units of observation during the analysis. These com-

muting zones are estimated using a horizontal clustering algorithm which clusters units

according to the strength of their commuting ties. As is explained in detail in Online

Appendix C this algorithm requires a tuning parameter h, that governs when it stops

clustering. To asses the influence of this tuning parameter h on the estimation results,

Tables A8 and A9 in Online Appendix C present corresponding robustness checks. In

sum all results are robust to different configurations of the clustering algorithm.

To check whether the commuting zones are adequate to control for spatial spillovers,

Tables A8 and A9 also report the results of Moran’s I test for spatial autocorrelation

in the residuals. For the configuration of the clustering algorithm that is used during

the primary analysis in this paper (h = 0.985) the Moran’s I test is unable to reject the

null of no spatial autocorrelation in all estimations. This suggests that the estimated

commuting zones are able to capture spatial spillovers and thus the estimation results

in Tables 4 to 7 are not affected by spatial autocorrelation. Importantly the estimation

results for political districts (which are pre-defined administrative areas) and less re-

strictive configurations of the clustering algorithm (with h < 0.985) fail to consistently

reject the null of no spatial autocorrelation.
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5.2 Heterogeneous Effects by Population Subgroups

While the results in section 5 show that industrial robotization has lead to reduc-

tions in labor demand in the manufacturing industries and increased out-migration

specifically out of rural areas, this section explores heterogeneous effects by age, gender

and skill level. For this Table 9 presents estimates for rural-to-urban net out-migration

decomposed by age and gender groups. Here the estimate in the first row of column

1 corresponds to the total effect of industrial robots on rural-to-urban migration. To

better asses the total effect of automation induced out-migration on the age structure

of rural areas, Table 9 considers migratory responses of the entire population (instead

of just regarding the working age population as in tables 5 to 7). This allows to also

examine migratory responses of the age groups ’0 to 14’ and ’65 and older’.27 While

the age group ’0 to 14’ clearly does not migrate on their own, but rather moves along

with their migrating parents, a decline in this age-group still has important implications

for the age-structure (both present and future) of a rural area. Especially if automa-

tion induced labor demand shocks hit young families and parents, which then respond

by migrating to the cities, the age-group ’0 to 14’ might also experience a downward

trend in population counts in rural areas, which further accelerates societal aging of the

population. Since Table 9 looks at the rural-to-urban component of net out-migration

rates of the entire population the total effect (0.471 - panel A, column 1) is somewhat

smaller when compared to the results for the working age population (0.565 - Table 6,

column 4). This already suggests, that the age-groups ’0 to 14’ and ’65 and older’ are

less mobile than the working age population. This is further confirmed by the estimates

in columns 2 to 5 which present the decomposition of the total effect by age-groups.

27For better readability the age groups ’50 to 64’ and ’65 and older’ are aggregated to a single

category in Table 9.
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Here around 59% of the total effect (panel D, column 3) is explained by out-migration

of individuals between the age of 15 and 34, while another 23% (panel D, column 2)

of the total effect stems from children under the age of 15 who out-migrate with their

parents. Hence around 82% of the total migratory response are accounted for by the

out-migration of individuals bellow the age of 35 showing that automation based labor

demand shocks lead to out-migration of predominantly young individuals out of affected

rural areas. While the age-group ’35 to 49’ also show relevant, although much smaller,

migratory responses, individuals above the age of 50 hardly respond to disruptions in

labor demand by moving to the cities.

Panels B and C of Table 9 further decompose the total effect by gender. Since

males account for a larger fraction of manufacturing employment (around 73% in 2001)

and thus bare a stronger shock incidence, they also account for a higher fraction of

the migratory response, with around 62% of the total effect being explained by male

migration.

Different migratory responses by skill groups are shown in Table 10. Since the

migration flow data does not contain information on educational attainment, migra-

tory responses of different skill groups are approximated by percentage changes of the

working age population. Therefore the results in Table 10 cannot distinguish between

the type of destination region (urban or rural), but rather approximate all migratory

responses in rural areas. Using percentage changes in the working age population in-

stead of the logarithm (as in Table A3 in the Appendix) has the advantage that the

overall effect on the entire working age population (in column 1 of Table 10) can be

additively decomposed into the respective contributions of different skill groups. The

estimation results for high, medium and low skilled workers in columns 2 to 4 of Table

10 show that the majority of the migration response to the robotization shock is caused

by movements of individuals in the middle and at the bottom of the skill distribution.
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Table 9: Rural-to-urban flows by age and gender (2SLS Estimates):

Dependent Variable: Net-Outflow from Rural Areas by Age Group

All Age 0 to 14 Age 15 to 34 Age 35 to 49 Age 50 and above
(1) (2) (3) (4) (5)

Panel A: All

∆ Robots 0.471 0.109 0.277 0.08 0.006
(0.131)*** (0.029)*** (0.079)*** (0.031)** (0.019)
[0.027]*** [0.008]*** [0.015]*** [0.008]*** [0.003]*

First-Stage F: 29.94 29.94 29.94 29.94 29.94

Panel B: Male

∆ Robots 0.291 0.036 0.183 0.046 0.026
(0.094)*** (0.015)** (0.065)*** (0.022)** (0.01)**
[0.019]*** [0.004]*** [0.012]*** [0.005]*** [0.001]***

First-Stage F: 29.94 29.94 29.94 29.94 29.94

Panel C: Female

∆ Robots 0.181 0.073 0.094 0.034 -0.021
(0.048)*** (0.016)*** (0.025)*** (0.013)** (0.012)*
[0.01]*** [0.004]*** [0.004]*** [0.003]*** [0.002]***

First-Stage F: 29.94 29.94 29.94 29.94 29.94

Panel D: Relative Contribution to Net-Outmigration by Age

All: 23.1% 58.86% 17.06% 1.25%
Male: 61.82% 7.59% 38.8% 9.82% 5.61%
Female: 38.44% 15.51% 20.07% 7.24% -4.37%

Period Fixed Effects x x x x x
Region Fixed Effects x x x x x
Demographic Controls x x x x x
Regional Characteristics x x x x x
Labor Demand Shifts x x x x x
Detailed Industry Structure x x x x x

Commuting Zones 158 158 158 158 158
Periods 2 2 2 2 2
Observations 316 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and
shift-share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of
observation are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set
of region and period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares
used to construct the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-
period structure of the local population in 68 age-gender-education-nationality cells. Regional characteristics control for
the start-of-period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period
degree of urbanization. Labor Demand Shifts include changes in import- and export-exposure and ICT-intensity. The
detailed industry structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods and capital goods), as well as industries outside of
manufacturing (construction, personal services and business services) and the public sector. All regressions are weighted
by start-of-period total population.
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Table 10: Percentage change of working age population in rural areas by skill groups:

By Skill-Group

All High-Skill Medium-Skill Low-Skill

(1) (2) (3) (4)

OLS:
∆ Robots -0.443 -0.031 -0.302 -0.11

(0.07)*** (0.017)* (0.049)*** (0.04)***
[0.012]*** [0.005]*** [0.013]*** [0.007]***

2SLS: Baseline IV
∆ Robots -0.499 -0.11 -0.185 -0.204

(0.11)*** (0.037)*** (0.086)** (0.072)***
[0.019]*** [0.005]*** [0.018]*** [0.011]***

First-Stage F: 29.77 29.77 29.77 29.77

Contribution to total effect: 22.04% 37.07% 40.88%

Period Fixed Effects x x x x
Region Fixed Effects x x x x
Demographic Controls x x x x
Regional Characteristics x x x x
Labor Demand Shifts x x x x
Detailed Industry Structure x x x x

Commuting Zones 158 158 158 158
Periods 2 2 2 2
Observations 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and
shift-share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of
observation are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set
of region and period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares
used to construct the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-
period structure of the local population in 68 age-gender-education-nationality cells. Regional characteristics control for
the start-of-period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period
degree of urbanization. Labor Demand Shifts include changes in import- and export-exposure and ICT-intensity. The
detailed industry structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods and capital goods), as well as industries outside of
manufacturing (construction, personal services and business services) and the public sector. High skill workers are
defined as university graduates. Medium skill workers are individuals who finished high-school or an apprenticeship,
and low-skill workers have finished compulsory schooling or less. The dependent variables are constructed as percentage
changes where the change in the population by skill group is divided by the initial year working age population. Hence
all skill group based variables have a common denominator and thus sum up to the aggregated population change. All
regressions are weighted by start-of-period working age population.
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Together these two groups account for around 78% percent of all migratory responses

to the robotization shock.

6 Conclusion

It has been long established in the economic literature that internal migration plays

a crucial role in the recovery of local labor markets after large scale shocks to labor

demand. While this mechanism is well known in the context of general labor demand

shocks, the impact of industrial robotization on internal migration flows only recently

received some attention. Also the question were internal migrants move after a shock

remained largely unstudied. This question is however of particular relevance as internal

migration flows are a major contributing factor to population declines in many rural

areas in both Europe and the US. This phenomenon, which is known as rural depopu-

lation, poses a great challenge for many rural areas, and also for society as a whole, as

it is closely connected to increases in geographical inequality and social and political

polarization.

In this paper I explore the connection between changes in labor demand which are

caused by the rise of industrial robotization, internal migration and rural depopulation

in Austria during the period 2003 to 2016. The results of the analysis show that indus-

trial robotization has had a substantial negative impact on manufacturing employment,

and increased out-migration in local labor markets most exposed to the robotization

shock. Laying a specific focus on rural areas reveals that these internal out-migration

flows in rural areas are primarily directed towards urban areas, thereby contributing to

the decline of many rural regions. In sum the estimations suggest that rural-to-urban

migration flows which are specifically caused by industrial robotization explain roughly

one fourth of all rural-to-urban movements between 2003 and 2016. Exploring heteroge-
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neous effects by population subgroups further shows that these rural-to-urban migration

flows are primarily driven by those individuals that bare the strongest incidence of the

robotization shock, namely young and medium- to low-skilled individuals.
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Appendix A Additional Descriptives & Results:

Figure A1: Urban-Rural Classification from Statistics Austria (2021)

Source: Statistics Austria

Figure A2: Change in robot density 1993-2016

Source: International Federation of Robotics (IFR), own calculations
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Table A1: Robotization and Employment - Additional Results

By Sector By Occupation

Manuf. Non-Manuf. Blue Collar White Collar
(1) (2) (3) (4)

Panel A: ∆ log(Employment) × 100

∆ Robots -4.343 -0.031 -2.328 0.388
(1.683)** (1.178) (0.913)** (1.431)
[0.299]*** [0.282] [0.14]*** [0.345]

First-Stage F: 32.78 32.78 32.78 32.78

Panel B: %-change in Employment × 100

∆ Robots -5.438 0.028 -2.134 -0.245
(1.585)*** (1.159) (0.946)** (1.358)

[0.3]*** [0.265] [0.154]*** [0.314]
First-Stage F: 32.78 32.78 32.78 32.78

Panel C: Separations (in % of initial employment) × 100

∆ Robots -8.006 -15.938
(2.771)*** (4.712)***
[0.53]*** [1.322]***

First-Stage F: 32.78 32.78

Panel D: New Hirings (in % of initial employment) × 100

∆ Robots -13.444 -18.072
(3.757)*** (5.054)***
[0.668]*** [1.373]***

First-Stage F: 32.78 32.78

Period Fixed Effects x x x x
Region Fixed Effects x x x x
Demographic Controls x x x x
Regional Characteristics x x x x
Labor Supply Shifts x x x x
Labor Demand Shifts x x x x
Detailed Industry Structure x x x x

Commuting Zones 158 158 158 158
Periods 2 2 2 2
Observations 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets and
shift-share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of
observation are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set
of region and period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares
used to construct the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-
of-period structure of the local workforce in 64 age-gender-education-nationality cells (demographic controls relating
to the age-group 0-14 are not included in employment regressions). Regional characteristics control for the start-
of-period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period degree
of urbanization. Shift-Share controls are included as the changes in import- and export-exposure and ICT-intensity
(labor demand shifts) and changes in the migrant population differentiated by 4 educational groups (labor supply
shifts). The detailed industry structure controls include start-of-period employment shares of several sub-industries
of manufacturing (production of food products, consumer goods, industrial goods and capital goods), as well as
industries outside of manufacturing (construction, personal services and business services) and the public sector. All
regressions are weighted by start-of-period working-age population.
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Table A2: Robotization and Employment - Shock Incidence by Age Groups

Total Effect By Age-group

Age 16-34 Age 35 to 49 Age 50 and older
(1) (2) (3) (4)

Panel A: %-change in Manufacturing Employment × 100

∆ Robots -5.438 -2.21 -1.517 -1.711
(1.585)*** (0.745)*** (0.772)* (0.592)***

[0.3]*** [0.155]*** [0.135]*** [0.141]***
First-Stage F: 32.78 32.78 32.78 32.78
Relative contribution to total effect: 40.64% 27.9% 31.46%

Panel B: %-change in Blue Collar Employment × 100

∆ Robots -2.134 -0.973 -0.591 -0.57
(0.946)** (0.466)** (0.469) (0.271)**
[0.154]*** [0.106]*** [0.086]*** [0.041]***

First-Stage F: 32.78 32.78 32.78 32.78
Relative contribution to total effect: 45.6% 27.69% 26.71%

Period Fixed Effects x x x x
Region Fixed Effects x x x x
Demographic Controls x x x x
Regional Characteristics x x x x
Labor Supply Shifts x x x x
Labor Demand Shifts x x x x
Detailed Industry Structure x x x x

Commuting Zones 158 158 158
Periods 2 2 2
Observations 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets and shift-
share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of observation
are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set of region and
period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares used to construct
the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-period structure
of the local workforce in 64 age-gender-education-nationality cells (demographic controls relating to the age-group 0-
14 are not included in employment regressions). Regional characteristics control for the start-of-period logarithm of
the gross regional product and the unemployment rate, as well as the start-of-period degree of urbanization. Shift-
Share controls are included as the changes in import- and export-exposure and ICT-intensity (labor demand shifts) and
changes in the migrant population differentiated by 4 educational groups (labor supply shifts). The detailed industry
structure controls include start-of-period employment shares of several sub-industries of manufacturing (production of
food products, consumer goods, industrial goods and capital goods), as well as industries outside of manufacturing
(construction, personal services and business services) and the public sector. All regressions are weighted by start-of-
period working-age population.
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Table A3: Robotization and Internal Migration (2003-2016) - Alternative migration
measure

(1) (2) (3) (4) (5)

Panel A: Dependent Variable: ∆ log(working-age population) ×100

OLS:
∆ Robots -0.384 -0.382 -0.375 -0.388 -0.393

(0.059)*** (0.059)*** (0.061)*** (0.061)*** (0.067)***
[0.017]*** [0.016]*** [0.016]*** [0.015]*** [0.016]***

2SLS:
∆ Robots -0.314 -0.338 -0.319 -0.327 -0.375

(0.091)*** (0.098)*** (0.099)*** (0.101)*** (0.101)***
[0.021]*** [0.018]*** [0.02]*** [0.02]*** [0.018]***

Panel B: Dependent Variable: ∆ log(rural working-age population) ×100

OLS:
∆ Robots -0.414 -0.411 -0.429 -0.434 -0.454

(0.061)*** (0.064)*** (0.065)*** (0.064)*** (0.071)***
[0.012]*** [0.014]*** [0.013]*** [0.013]*** [0.011]***

2SLS:
∆ Robots -0.361 -0.376 -0.448 -0.457 -0.502

(0.101)*** (0.106)*** (0.111)*** (0.113)*** (0.108)***
[0.022]*** [0.018]*** [0.022]*** [0.021]*** [0.019]***

First Stage Results: 0.011 0.011 0.011 0.011 0.011
(0.001)*** (0.001)*** (0.001)*** (0.001)*** (0.001)***
[0.0003]*** [0.0003]*** [0.0003]*** [0.0003]*** [0.0002]***

First Stage F-Statistic: 37.09 34.58 27.94 27.58 29.77

Period Fixed Effects x x x x x
Region Fixed Effects x x x x x
Demographic Controls x x x x x
Regional Characteristics x x x x
Labor Demand Shifts x x x
Manufacturing Share x
Detailed Industry Structure x

Commuting Zones 158 158 158 158 158
Periods 2 2 2 2 2
Observations 316 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets and shift-
share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of observation
are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set of region and
period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares used to construct
the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-period structure
of the local population in 68 age-gender-education-nationality cells. Regional characteristics control for the start-of-
period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period degree of
urbanization. Shift-Share controls are included as the changes in import- and export-exposure and ICT-intensity (labor
demand shifts) and changes in the migrant population differentiated by 4 educational groups (labor supply shifts). The
detailed industry structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods and capital goods), as well as industries outside of
manufacturing (construction, personal services and business services) and the public sector. All regressions are weighted
by start-of-period working-age population.
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Figure A3: Benchmarking of robotization effects:

(a) Manufacturing Share

(b) Cummulated net-outmigration rates
Working-age population (age 15 to 64)

Notes: The counterfactual evolutions of the manufacturing share and the cummulated net out-migration rates are
calculated using the observed change in robots per 1000 workers (1.485 - Figure A2). In Panel (a) this value is multiplied
with the estimated effect of one additional robot per 1000 workers on manufacturing employment (-4.343 - Table 4,
column 6) , while in Panel (b) it is multiplied with the estimated effect of one additional robot on the rural-to-urban net
out-migration rates of the working-age population (0.565 - Table 6, column 4). The resulting contributions of industrial
robots to changes in manufacturing employment and net-outmigration rates are then spread out evenly over the entire
observational period and added to the observed trends to construct the counterfactuals. The grey area corresponds to
95% confidence intervals (computed from the conventional heteroskedasticity robust standard errors).
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Appendix B Additional Robustness Checks:

Table A4: Robustness Check: Alternative definition of rural areas:

Total External Internal

All Rural to Urban Rural to Rural
(1) (2) (3) (4) (5)

OLS:
∆ Robots 0.162 -0.004 0.166 0.12 0.046

(0.159) (0.023) (0.175) (0.094) (0.089)
[0.038]*** [0.005] [0.042]*** [0.021]*** [0.023]**

2SLS:
∆ Robots 0.977 -0.068 1.044 0.615 0.429

(0.299)*** (0.046) (0.333)*** (0.17)*** (0.182)**
[0.061]*** [0.009]*** [0.068]*** [0.035]*** [0.037]***

First-Stage F: 29.77 29.77 29.77 29.77 29.77

Period Fixed Effects x x x x x
Region Fixed Effects x x x x x
Demographic Controls x x x x x
Regional Characteristics x x x x x
Labor Demand Shifts x x x x x
Detailed Industry Structure x x x x x

Commuting Zones 158 158 158 158 158
Periods 2 2 2 2 2
Observations 316 316 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and
shift-share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of
observation are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set
of region and period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares
used to construct the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-
period structure of the local population in 68 age-gender-education-nationality cells. Regional characteristics control for
the start-of-period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period
degree of urbanization. Labor Demand Shifts include changes in import- and export-exposure and ICT-intensity. The
detailed industry structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods and capital goods), as well as industries outside of
manufacturing (construction, personal services and business services) and the public sector. All regressions are weighted
by start-of-period working-age population.
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Table A5: Correlation between employment shares of different age groups in Austria
and countries used to construct instrument

Share of total hours worked by:

Young Middle Old
(1) (2) (3)

Average: 1.326 0.73 1.516
(0.195)*** (0.226)*** (0.159)***

Canada: 0.447 0.358 0.913
(0.42) (0.152)** (0.486)*

Denmark: 0.483 0.024 0.58
(0.249)* (0.121) (0.221)**

Finland: 1.396 -0.541 0.507
(0.145)*** (0.553) (0.073)***

Italy: 0.488 0.265 0.78
(0.135)*** (0.074)*** (0.103)***

Spain: 1.18 0.632 0.916
(0.202)*** (0.103)*** (0.43)*

United Kingdom: 1.891 1.054 0.999
(0.651)** (0.252)*** (0.489)*

United States: 0.735 0.406 1.285
(0.306)** (0.175)** (0.436)**

Industries: 16

Notes: * < 0.10, ** < 0.05, *** < 0.01. Estimates are from regressions of employment shares (by age group) in Austria
on the corresponding employment shares in other countries. The explanatory variable in the first regression (”Average”)
is computed as an unweighted mean over all available countries. Data on industry level shares of hours worked by age
group are from the EU-KLEMS March 2008 release. Industry level correlations have been estimated using 2003 data.
Data on industry level age composition for France, Mexico, Norway and Sweden is not available. Robust standard errors
are shown in brackets.
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Table A6: Alternative Instrumental Variable

OLS 2SLS

Baseline IV Exclude e-Area

(1) (2) (3)

Panel A: ∆ log(manufacturing employment)

∆ Robots -0.885 -4.343 -3.061
(1.333) (1.683)** (1.527)**

[0.438]** [0.299]*** [0.224]***
F-Statistic: 32.78 58.02

Panel B: Net-outflow

∆ Robots 0.155 1.055 1.105
(0.165) (0.323)*** (0.257)***

[0.043]*** [0.071]*** [0.058]***
F-Statistic: 29.77 53.95

Panel C: Net-outflow (rural areas)

∆ Robots 0.141 0.953 0.852
(0.164) (0.307)*** (0.241)***

[0.037]*** [0.061]*** [0.05]***
F-Statistic: 29.77 53.95

Panel D: Net-outflow (rural to urban)

∆ Robots 0.057 0.565 0.435
(0.09) (0.162)*** (0.129)***

[0.02]*** [0.031]*** [0.026]***
F-Statistic: 29.77 53.95

Period Fixed Effects x x x
Region Fixed Effects x x x
Demographic Controls x x x
Regional Characteristics x x x
Labor Demand Shifts x x x
Labor Supply Shifts x x x
Detailed Industry Structure x x x

Commuting Zones 158 158 158
Periods 2 2 2
Observations 316 316 316

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and
shift-share robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. Units of
observation are 158 clustered commuting zones (for details see Online Appendix C). All specifications include a set
of region and period fixed effects, whereby the period fixed effects are interacted with the sum of exposure shares
used to construct the explanatory variable (OLS) or the instrument (2SLS). Demographic controls include the start-of-
period structure of the local population in 68 age-gender-education-nationality cells. Regional characteristics control for
the start-of-period logarithm of the gross regional product and the unemployment rate, as well as the start-of-period
degree of urbanization. Labor Demand Shifts include changes in import- and export-exposure and ICT-intensity. The
detailed industry structure controls include start-of-period employment shares of several sub-industries of manufacturing
(production of food products, consumer goods, industrial goods and capital goods), as well as industries outside of
manufacturing (construction, personal services and business services) and the public sector. All regressions are weighted
by start-of-period working-age population.
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Online Appendix

Online Appendix C Commuting Zones:

This Section describes the construction of the commuting zones used as units of

observation during the analysis. Thereby I strictly follow the methodology described

in Tolbert and Sizer (1996) and Dorn (2009).

The construction of commuting zones requires data on the commuting ties be-

tween municipalities. This data is taken from the register based Austrian census 2011

(available at Statistics Austria), and includes detailed information on municipality-to-

municipality commuting flows.

Denote municipalities with k = 1, ..., K. Then a K ×K commuting-matrix is con-

structed, whereby rows i indicate the municipality of residence and columns j indicate

the municipality of work. Each element of this commuting matrix therefore contains

the number of workers who live in municipality i and work in municipality j, with the

main diagonal indicating the number of workers who work in their residential munic-

ipality (i.e. do not commute). This commuting matrix is converted into a symmetric

flow matrix. Following Tolbert and Sizer (1996), each element of this flow matrix is

constructed as:

Pij = Pji =
fij + fji

min(Li, Lj)
(9)

where fij denotes the absolute number of workers living in municipality i who commute

to municipality j, and Li denotes the residential labor force of municipality i. Hence

each element of the flow matrix P computes as the sum of shared commuters between i

and j, divided by the smaller residential labor force. As is explained in detail in Tolbert
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and Sizer (1996), the symmetric flow matrix P is characterized as a similarity matrix,

where a higher value of Pij indicates a stronger commuting relationship between i and

j. As the clustering algorithm (explained in detail below) requires a dissimilarity (or

distance) matrix as input, the symmetric flow matrix is converted into a distance matrix

D, whereby each element of this matrix computes as:

Dij = Dji =


1− Pij if i 6= j

0 if i = j

(10)

In this distance matrix, a lower value of Dij indicates stronger commuting ties (i.e.

less distance) between municipalities i and j. In the main diagonal, where i = j, the

distance is set to zero.28

To arrive at the desired commuting zones, a Hierarchical Cluster Algorithm is applied

to the distance matrix D.29 This algorithm clusters elements of the distance matrix

D, based on their average distance to each other, starting with the closest pair, and

ending with one large cluster of all units. The algorithm stops clustering, once the

average between cluster distance reaches a predefined threshold h. For the estimation

of commuting zones for the US Tolbert and Sizer (1996) use an average between cluster

distance of h = 0.98.

Table A7 compares clustered Austrian commuting zones for different threshold values

28As Tolbert and Sizer (1996) mention in footnote 4 on page 12 of their paper, in some rare cases

(i.e. whenever the sum of shared commuters between i and j is greater than the smaller one of the

residential labor forces), Pij exceeds one. This would imply a negative distance between i and j in the

distance matrix D. To avoid this, I follow Tolbert and Sizer (1996) and set Dij = 0.001 whenever this

is the case.

29This type of algorithm is often used in machine learning applications and belongs to the broader

class of unsupervised learning algorithms.
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h, political districts and municipalities. As is to be expected, municipalities themselves

perform rather poorly at containing commuter flows within their boarders with only

about 47.3% of workers working in their residential municipality. Political districts,

which are pre-defined administrative units, perform a little better. They contain around

65.6% of all commuters within the borders of 94 units (whereby the 23 districts of the

capital Vienna are aggregated to a single observation).

Table A7: Comparison of different local labor market (LLM) definitions

LLM Commuters within LLM N

Municipalities: 47.30% 2090
Political Districts: 65.62% 94
Commuting Zones:

h = 0.98 70.07% 238
h = 0.9825 71.57% 197
h = 0.985 72.75% 158
h = 0.9875 74.18% 124
h = 0.99 75.31% 100

Note: Data on commuting flows is taken from the 2011 registry based census (available at Statistics
Austria). To match municipality level data with other data sources used in the subsequent analysis,
2011 municipality structure has been mapped to the 2017 municipality structure. In cases were this
mapping was ambiguous (i.e. when municipalities were split during reforms), some municipalities had
to be aggregated to arrive at an municipality structure that is consistent over all used data sources.
Therefore the number of municipalities slightly deviates from official sources.

Comparing the performance of municipalities and political districts to clustered

commuting zones, shows that the clustered commuting zones for all used thresholds h

perform markedly better at containing commuting flows. For example the commuting

zone for the clustering threshold h = 0.98 (i.e. the same threshold as in Tolbert and

Sizer, 1996) captures about 70% of commuting flows within its clusters. Compared

to pre-defined political districts, it does this much more efficiently, as it captures a

larger fraction of commuters (70% vs. 65.6%) in a higher number of clusters (238 vs.

94). Clustered commuting zones thus perform markedly better at controlling for spatial
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shock spillovers, while also resulting in a higher number of available observations. This

comes as no surprise, as the horizontal clustering algorithm is specifically designed to

cluster regions according to their commuting ties.

For the main part of the analysis, I rely on commuting zones clustered up to an

average between cluster distance of h = 0.985. This threshold is slightly more restrictive

than the one used by Tolbert and Sizer (1996) for the US in that it requires a greater

average between cluster distance.

Robustness of results to different clustering thresholds h

To asses the influence of the tuning parameter h on the estimation results Tables

A8 and A9 show corresponding estimations for several different values of this tuning

parameter. Here Table A8 uses the baseline instrumental variable, and Table A9 uses

the instrument were all Euro-Area countries are excluded from the computation. The

very first configuration of the tuning constant (h = 0.98, column 2) corresponds to

the configuration used for the clustering of US commuting zones in Tolbert and Sizer

(1996) and Dorn (2009). All following configurations are more restrictive in that they

allow weaker between-cluster commuting ties and thus result in a lower number of

clusters. The baseline configuration which is used during the primary part of the

analysis (h = 0.985) is presented in column 4.

As is visible from Tables A8 and A9, the primary results of the analysis are ro-

bust to different configurations of the clustering algorithm. Here it stands out, that

more thoroughly controlling for spatial spillover effects (via higher configurations of h)

mostly leads to an increase in effect size and precision. Since commuting zones which

are clustered using higher values of the tuning constant h perform better at containing

commuters within their borders, this indicates the presence of spatial spillover effects

which potentially bias the estimates. This is further corroborated by Moran’s I test for
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Table A8: Local Labor Market Definition (Baseline IV)

(1) (2) (3) (4) (5) (6)

Baseline

LLM Definition: Districts h = 0.98 h = 0.9825 h = 0.985 h = 0.9875 h = 0.99
Commuters within LLM: 65.62 % 70.07 % 71.57 % 72.75 % 74.18 % 75.31 %

Panel A: ∆ log(manufacturing employment)

∆ Robots 2.455 -5.407 -4.679 -4.343 -1.909 0.898
(1.082)** (0.902)*** (0.792)*** (1.683)** (1.421) (3.173)
[0.616]*** [0.2]*** [0.176]*** [0.299]*** [0.32]*** [0.748]

First-Stage F: 26.24 80.54 78.69 32.78 28.85 2.11

Moran’s I: 0.012 -0.032 0.002 0.031 -0.04 -0.019
(p-Value) (0.739) (0.14) (0.845) (0.174) (0.177) (0.683)

Panel B: Net-outflow (all)

∆ Robots -0.159 0.051 0.388 1.055 0.242 0.172
(0.127) (0.164) (0.177)** (0.323)*** (0.314) (0.438)

[0.025]*** [0.033] [0.035]*** [0.071]*** [0.077]*** [0.074]**
First-Stage F: 13.22 78.31 80.9 29.77 17.73 2.77

Moran’s I: -0.109 0.023 -0.076 -0.026 0.008 0.033
(p-Value) (0.039)** (0.198) (0.002)*** (0.37) (0.686) (0.234)

Panel C: Net-outflow (rural areas only)

∆ Robots 0.082 0.055 0.433 1.02 0.461 0.007
(0.102) (0.168) (0.188)** (0.342)*** (0.324) (0.505)

[0.031]*** [0.034] [0.031]*** [0.069]*** [0.076]*** [0.094]
First-Stage F: 13.22 78.31 80.9 29.77 17.73 2.77

Moran’s I: 0.074 0.01 -0.08 -0.028 0.002 0.024
(p-Value) (0.121) (0.529) (0.001)*** (0.333) (0.853) (0.38)

Panel D: Net-outflow (rural to urban)

∆ Robots -0.07 0.023 0.23 0.565 0.483 -0.213
(0.054) (0.08) (0.087)*** (0.162)*** (0.14)*** (0.236)

[0.009]*** [0.019] [0.013]*** [0.031]*** [0.03]*** [0.054]***
First-Stage F: 13.22 78.31 80.9 29.77 17.73 2.77

Moran’s I: 0.01 0.039 -0.058 -0.039 0.018 0.023
(p-Value) (0.748) (0.042)** (0.02)** (0.173) (0.45) (0.397)

Full Controls x x x x x x

Regions 94 238 197 158 124 100
Periods 2 2 2 2 2 2
Observations 188 476 394 316 248 200

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and shift-share
robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. All specifications include
a full set of control variables. All regressions are weighted by start-of-period working-age population.
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Table A9: Local Labor Market Definition (Alternative IV)

(1) (2) (3) (4) (5) (6)

Baseline

LLM Definition: Districts h = 0.98 h = 0.9825 h = 0.985 h = 0.9875 h = 0.99
Commuters within LLM: 65.62 % 70.07 % 71.57 % 72.75 % 74.18 % 75.31 %

Panel A: ∆ log(manufacturing employment)

∆ Robots 1.788 -5.681 -4.622 -3.061 -2.618 -7.61
(1.065) (0.705)*** (0.719)*** (1.527)** (1.657) (2.268)***

[0.586]*** [0.185]*** [0.129]*** [0.224]*** [0.345]*** [0.55]***
First-Stage F: 50.25 158.56 179.06 58.02 42.02 4.16

Moran’s I: 0.026 -0.032 0.002 0.031 -0.043 -0.032
(p-Value) (0.535) (0.143) (0.853) (0.183) (0.145) (0.419)

Panel B: Net-outflow (all)

∆ Robots -0.2 0.3 0.48 1.105 0.769 0.573
(0.111) (0.127)** (0.16)*** (0.257)*** (0.27)*** (0.291)*

[0.023]*** [0.024]*** [0.032]*** [0.058]*** [0.054]*** [0.051]***
First-Stage F: 32.09 153.92 168.11 53.95 29.09 6.09

Moran’s I: -0.103 0.018 -0.076 -0.027 0.006 0.033
(p-Value) (0.051)* (0.293) (0.002)*** (0.366) (0.745) (0.231)

Panel C: Net-outflow (rural areas only)

∆ Robots 0 0.286 0.484 0.934 0.728 0.286
(0.086) (0.141)** (0.172)*** (0.27)*** (0.282)** (0.334)
[0.026] [0.025]*** [0.023]*** [0.056]*** [0.052]*** [0.072]***

First-Stage F: 32.09 153.92 168.11 53.95 29.09 6.09

Moran’s I: 0.054 0.006 -0.08 -0.028 0.003 0.023
(p-Value) (0.241) (0.667) (0.001)*** (0.341) (0.804) (0.385)

Panel D: Net-outflow (rural to urban)

∆ Robots -0.067 0.114 0.223 0.435 0.433 -0.016
(0.047) (0.069) (0.079)*** (0.129)*** (0.125)*** (0.161)

[0.008]*** [0.015]*** [0.01]*** [0.026]*** [0.022]*** [0.037]
First-Stage F: 32.09 153.92 168.11 53.95 29.09 6.09

Moran’s I: 0.012 0.037 -0.058 -0.036 0.018 0.022
(p-Value) (0.721) (0.057)* (0.02)** (0.215) (0.454) (0.425)

Full Controls x x x x x x

Regions 94 238 197 158 124 100
Periods 2 2 2 2 2 2
Observations 188 476 394 316 248 200

Notes: * < 0.10, ** < 0.05, *** < 0.01. Conventional robust standard errors are shown in round brackets, and shift-share
robust standard errors from Adao, Kolesár, and Morales (2019) are shown in square brackets. All specifications include
a full set of control variables. All regressions are weighted by start-of-period working-age population.
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spatial autocorrelation in the residuals which indicates the presence of spatial autocorre-

lation when using political districts (column 1) and less restrictive configurations of the

clustering algorithm (columns 2 and 3). Importantly Moran’s I test fails to reject the

null of no spatial autocorrelation for the configuration of the clustering algorithm that

is used during the primary part of the analysis (h = 0.985, column 4), which suggests

that all results in the main part of the paper are unaffected by spatial autocorrelation.

Increasing the value of h also has an impact on the first stage regression, as the

strength of the instrument declines with increasing h. Therefore the first stage F-

statistic drops below 10 when increasing h to 0.99.

Online Appendix D Shift-share standard errors:

The shift-share robust standard errors proposed by Adao, Kolesár, and Morales

(2019) rely on asymptotic properties related to the number of industry shocks that are

available to compute the shift-share variables. Correspondingly they may be downward

biased, and thus overreject, in applications where the number of available industries is

small. A possible downward bias due to an insufficient number of industry shocks is of

particular concern in this application, because the IFR-data only contains information

on 26 industries. This concern is further corroborated, since the AKM-standard errors

are generally smaller than conventional heteroskedasticity robust standard errors.

To address this concern, I apply an adjusted computation for the AKM-standard

errors that uses the fact that each of the 26 IFR-industries is itself comprised of several

sub-industries.

Let any industry i = 1, ..., I be composed of several sub-industries j such that

j = 1, ..., J ∈ i. Then the shift-share variable for region r can be re-written as:
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∆Robotsr =
∑
i

Empir
Empr

∆Robotsi
Empi

(11)

=
∑
i

(∑
j∈i

Empjr
Empr

)
∆Robotsi
Empi

(12)

because the employment share of industry i in region r is simply the sum of the

employment shares of its sub-industries.

To arrive at a shift-share expression for predicted regional exposure that uses the

more detailed sub-industry based exposure shares one needs to assume that within

industry i all sub-industries experience identical changes in robot density. Formally

this assumption can be expressed as:

∆Robotsj
Empj

=
∆Robotsi
Empi

∀ j ∈ i (13)

In other words, this assumption states that every sub-industry j experiences the

same change in robots per worker, as is observed for the aggregated industry i. Using

this assumption allows to re-write the shift-share expression in equation 11 as:

∆Robotsr =
∑
i

∑
j∈i

Empjr
Empr

∆Robotsj
Empj

(14)

Notice that predicted robot exposure computed from expressions 11 and 14 result

in the same value for regional robot exposure ∆Robotsr. The only difference between

the two expression is that the first is calculated from industry-level exposure shares,

while the second is calculated using more detailed sub-industry level exposure shares

(and imposing the assumption laid out in equation 13).

Therefore the same shift-share variable can be constructed from the exposure shares
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of the aggregated industry itself:

Empir
Empr

(15)

or from the more detailed exposure shares of all sub-industries:

Empjr
Empr

(16)

whereby the second way results in a more detailed matrix of exposure shares which

can be used in the estimation of the AKM-standard errors.

Table A10 compares the AKM-standard error computation as proposed by Adao,

Kolesár, and Morales (2019) with standard error estimates for the described adjust-

ment. Table A11 lists all available IFR-industries alongside the corresponding NACE

Rev. 2 sub-industries used for the adjusted estimation. For illustrative purposes this

comparison is carried out using estimations on the log-change in manufacturing em-

ployment. Other dependent variables result in a very similar picture (these results are

available upon request). The comparison is performed for both variations of the AKM-

standard error proposed in Adao, Kolesár, and Morales (2019), whereby the first one

(’AKM’) corresponds to the default30, and the second version (’AKM0’) corresponds

to an estimate where the null is imposed in the estimation31. To account for the panel

structure of the data the baseline estimates for both the AKM- and the AKM0-standard

error cluster the available industries at the level of more aggregated industry categories

(as is recommended for panel settings in Adao, Kolesár, and Morales, 2019).

Because the adjustment described in equations 11 to 14 clearly violates the assump-

tion of mutual independence of the robotization shocks (assumption 2 in Adao, Kolesár,

30Equations 26 (OLS) and 36 (2SLS) in Adao, Kolesár, and Morales (2019).

31Equation 27 (OLS) and comment below equation 36 (2SLS) in Adao, Kolesár, and Morales (2019).
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and Morales, 2019), as the sub-industry shocks are perfectly correlated, standard error

estimations for the adjusted case are again clustered by more aggregated industries (as

described in equation 37 in Adao, Kolesár, and Morales, 2019). Since the clustered

version of the AKM-standard error only requires shocks to be independent across in-

dustry clusters but not within, this clustering should alleviate problems arising from

the inherent dependence of the industry shock built into the described adjustment.

As can be seen in column 8 of Table A10, the adjustment described in equations

11 to 14 results in markedly higher standard error estimates. Both the clustered and

unclustered versions of the adjustment result in standard error estimates that are on

average between around 340% and 380% larger than in the unadjusted case for the 2SLS

estimations. These results suggest that the baseline AKM-standard errors are indeed

downward biased due to the insufficient number of industry level robotization shocks.

Including additional control variables appears to somewhat alleviate this issue, however

also in the specification including all available control variables the adjusted standard

error estimates in the 2SLS estimation are still between around 150% and 220% larger

than in the unadjusted case.

Interestingly the unclustered version of the adjustment result in a stronger increase

in the size of the estimated standard error (+216%) than the clustered version (+149%),

while there is almost no difference between the AKM and the AKM0 standard error.

Given the estimation results in Table A10, I apply the described adjustment to

all estimations of the AKM-standard error throughout the analysis, as this results in

more conservative standard error estimates. I do this to mitigate concerns about a

possible downward bias in these standard errors due to the small number of industry

level observations. Since the unclustered version of the adjustment results in more

conservative estimates, I do not cluster by more aggregated industries. Given that

there is little difference between the AKM and AKM0 standard errors in Table A10, I
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use the baseline AKM-standard errors. Additionally all estimations in the main part of

the paper also report conventional heteroskedasticity robust standard errors, as these

standard errors are generally larger than the (adjusted or unadjusted) AKM-standard

errors.
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Table A11:
Correspondence between IFR and NACE Rev. 2 used in the adjustment of the AKM-standard erros

IFR NACE Rev. 2

Code Name Code Name

Manufacturing industries:

s10 12 Food products, beverages and tobacco C 10 Food products
C 11 Beverages
C 12 Tobacco products

s13 15 Textiles, leather, wearing apparel C 13 Textiles
C 14 Wearing apparel
C 15 Leather and related products

s16 Wood, products of wood (incl. wood furniture) C 16 Wood, products of wood and cork, (excl. furniture)
and products of cork Articles of straw and plaiting materials

C 3101 Office and shop furniture
C 3102 Kitchen furniture
C 3109 Other Furniture

s17 18 Paper and paper products, publishing & printing C 17 Paper and paper products
C 18 Printing and reproduction of recorded media

s19 Chemical products, pharmaceuticals, cosmetics C 204 Soap and detergents, cleaning and polishing
preparations, perfumes and toilet preparations

C 21 Basic pharmaceutical products and
pharmaceutical preparations

s20 21 Unspecified chemical, petrolium products C 19 Coke and refined petroleum products
C 201 Basic chemicals, fertilisers and nitrogen compounds,

plastics and synthetic rubber in primary forms
C 202 Pesticides and other agrochemical products
C 203 Paints, varnishes and similar coatings,

printing ink and mastics
C 205 Other chemical products
C 206 Man-made fibres

s22 Rubber and plastic products without auto parts C 221 Rubber products
C 222 Plastic products

s23 Glass, ceramics, stone, mineral products n.e.c. C 231 Glass and glass products
C 232 Refractory products
C 233 Clay building materials
C 234 Other porcelain and ceramic products
C 235 Cement, lime and plaster
C 236 Articles of concrete, cement and plaster
C 237 Cutting, shaping and finishing of stone
C 239 Abrasive products and non-metallic mineral products n.e.c.

s24 Basic metals (iron, steel, aluminium, copper, chrome) C 241 Basic iron and steel and of ferro-alloys
C 242 Tubes, pipes, hollow profiles and related fittings, of steel
C 243 Products of first processing of steel
C 244 Basic precious and other non-ferrous metals
C 245 Casting of metals

s25 Metal products (without automotive part), except C 251 Structural metal products
machinery and equipmen t C 252 Tanks, reservoirs and containers of metal

C 253 Steam generators, except central heating hot water boilers
C 254 Weapons and ammunition
C 255 Forging, pressing, stamping and roll-forming of metal

powder metallurgy

Source: International Federation of Robotics
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Table A9:
Correspondence between IFR and NACE Rev. 2 used in the adjustment of the AKM-standard erros
(continued)

IFR NACE Rev. 2

Code Name Code Name

C 256 Treatment and coating of metals; machining
C 257 Cutlery, tools and general hardware
C 259 Other fabricated metal products

s260 261 Electronic components/devices and Semiconductors, C 261 Electronic components and boards
LCD, LED (incl. solar cells and solar thermal collectors)

s262 Computers and peripheral equipment C 262 Computers and peripheral equipment

s263 Info communication equipment domestic and C 263 Communication equipment
professional (TV, radio, CD, DVD-Players, pagers, C 264 Consumer electronics
mobile phones, VTR etc.) without automotive parts

s265 Medical, precision and optical instruments C 265 Instruments and appliances for measuring, testing and
navigation; watches and clocks

C 266 Irradiation, electromedical and electrotherapeutic equipment
C 267 Optical instruments and photographic equipment

s271 Electrical machinery and apparatus n.e.c. C 271 Electric motors, generators, transformers and electricity
(without automotive parts) distribution and control apparatus

C 272 Batteries and accumulators
C 273 Wiring and wiring devices
C 274 Electric lighting equipment

s275 Household/domestic appliances C 275 Domestic appliances

s279 Electrical/electronics unspecified C 279 Other electrical equipment

s28 Industrial machinery C 281
C 281 General-purpose machinery
C 282 Other general-purpose machinery
C 283 Agricultural and forestry machinery
C 284 Metal forming machinery and machine tools
C 289 Other special-purpose machinery

s29 Motor vehicles, motor vehicle engines and bodies C 291 Motor vehicles
C 292 Bodies (coachwork) for motor vehicles; trailers
C 293 Parts and accessories for motor vehicles

s30 Other transport equipment C 301 Ships and Boats
C 302 Railway locomotives and rolling stock
C 303 Air and spacecraft and related machinery
C 304 Military fighting vehicles
C 309 Transport equipment n.e.c.

s91 Other Manufacturing

Non-Manufacturing industries:

sA Agriculture, hunting and forestry, fishing A Agriculture, Forestry, Fishing

sB Mining and quarrying B Mining and quarrying

sDE Electricity, gas and water supply D Electricity, gas, steam and air conditioning supply
E Water supply; sewerage, waste management and remediation

sF Construction F Construction

sP Education, research and development P Education
M 72 Scientific research and development

Source: International Federation of Robotics
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