CAN BARELY WINNING LEAD TO LOSING?
EVIDENCE FOR A SUBSTANTIAL
GENDER GAP IN PSYCHOLOGICAL MOMENTUM

by

Mario LACKNER
Michael WEICHSELBAUMER

Working Paper No. 2119
December 2021
Can barely winning lead to losing? Evidence for a substantial gender gap in psychological momentum *

Mario Lacknera,c and Michael Weichselbaumerb

aDepartment of Economics, Johannes Kepler University Linz (JKU)
bVienna University of Economics and Business
cChristian Doppler Laboratory "Aging, Health and the Labor Market"

December 14, 2021

Abstract

We use data from professional tennis to measure the causal effect of past on current performance for women and men. Identification relies on exogenous shocks to the probability of facing a contested game, which is a previous stage of competition with strong resistance. We find fundamental gender differences: whereas men’s performance is unaffected by previously facing and winning a contested game, women experience a sizeable deterioration of performance after barely winning the previous stage. This result is linked to gender differences in psychological momentum. Detailed analysis reveals heterogeneous effects by experience, ability and contest progression.

\textit{JEL Classification:} J16, M52

\textit{Keywords:} Performance feedback, relative performance, process feedback, gender differences, psychological momentum.

*Corresponding author: Mario Lackner, Department of Economics, Altenberger Str. 69, 4040 Linz; Tel.:+43/732/2468-7390; Email: Mario.Lackner@jku.at. Michael Weichselbaumer: michael.weichselbaumer@wu.ac.at. Thanks to helpful comments by Alex Krumer and Hendrik Sonnabend.
I don’t really see it as pressure. I mostly see it as a challenge for me. When he’s up a break point, I see that as a challenge to overcome the difficulty.

Stefanos Tsitsipas, top-3 ranked ATP player, after beating Roger Federer in the 2019 ATP World Tour Finals.1

1. Introduction

One explanation for the causal effects of past on present performance is provided by psychological momentum (Adler 1981), a concept describing how past performance can affect future performance of agents in contests. The empirical literature on psychological momentum relies on intermediate performance measures, which trigger either positive or negative momentum. Most estimates, however, will be distorted by strategic momentum (Klumpp & Polborn 2006, Malueg & Yates 2010). When effort is costly, competitors will strategically adapt effort after intermediate outcomes changed the relative position, and the probability to win the contest.

Using data from top-level professional tennis, we investigate potential gender differences in the causal effect of past on future performance. We propose a novel empirical approach to measure negative psychological momentum resulting from near setbacks, ruling out any strategic performance effects. In tennis, only game wins matter, individual points are not counted towards winning a set or match. We estimate how winning a strongly contested game in $t-1$, compared to a decisive win, affects the probability to win the subsequent game t. Contested games are defined as games which need at least 8 points to be won by the player on serve, clearly exceeding the minimal game duration of 4 points. Winning a game either decisively, or experiencing a contested game, does not make a difference for the score going into game t, and, thus, no strategic effort adjustment of both players is plausible. This particular type of information on past performance is ambiguous in the sense that it can either cause positive or negative psychological momentum.

Our empirical approach relies on double faults as quasi-random exogenous shocks for causal identification of psychological momentum. To support this strategy, we extensively investigate and discuss the quasi-random nature of double faults. The benefit of our approach is that we measure a type of psychological momentum that is rooted in purely random changes of how the previous game was won, while keeping constant the outcome that is relevant for calculating win probabilities. This empirical approach rules out any other, potentially non-random changes in effort or temporary unobserved shifts in relative ability of both players.

Laboratory experiments found that the reaction to luck in contests is different for men and women (Mago et al. 2013, Gill & Prowse 2014). Our findings stress the gender gap in reaction to quasi-random feedback, in a real-world professional setting where men and women have strikingly similar career prospects.

We estimate the negative psychological momentum effect to be particularly strong for young female contestants, as well as female contestants with low absolute and relative ability. The effect is, moreover, more pronounced when importance to perform is high.

Previous results on psychological momentum are presented by Meier et al. (2020), who estimate that positive psychological momentum substantially decreases the probability to lose in the subsequent sub-contest. Berger & Pope (2011) find that teams who are only slightly behind after the first stage are more likely to win the second stage and, thus, the overall contest, compared to other close scores. Cohen-Zada et al. (2017) extends the empirical literature to potential gender differences. Positive momentum affects performance of male competitors positively, but has no effect for women. Gauriot & Page (2019) study momentum effects in tennis and find that winning a point increases the probability to win the subsequent point. We propose an alternative estimation strategy to estimate psychological momentum without potential distortions of strategic considerations.

Understanding gender differences in psychological momentum is relevant for a multitude of settings. Labor markets commonly feature competition, e.g. for job applications or promotions. Within organizations, some form of competition is the rule rather than the exception. Empirical evidence suggests that random shocks during early careers can have long-lasting consequences on subsequent career developments (Oreopoulos et al. 2012, Schwandt & Von Wachter 2019, Von Wachter 2020). Similarly, performance feedback in educational contexts can have gender-specific effects (Jalava et al. 2015).

Our main results have implications that are relevant for the literature on the effects of feedback on performance. The type and direction of feedback is an important factor (Balcazar et al. 1985). Psychologists demonstrate that gender differences in the reaction to positive process-feedback are relevant among young children (Henderlong & Lepper 2002). Experimental results also suggest that positive process-feedback can act as a motivational tool for work teams (Geister et al. 2006). The type of information on intermediate relative performance we are interested in can also be interpreted as process-feedback. The clear difference, however, is that our measure of past relative performance is a spurious type of feedback provided by the point-by-point record of the game, rather than external feedback.

Professional sports in general (Kahn 2000, Bar-Eli et al. 2020), and professional tennis in particular, provide a fruitful setting to study behavioral differences for men and women, and related research questions (Malueg & Yates 2010, Wozniak 2012, Banko et al. 2016). Top-level professional tennis provides high stakes (i.e. ranking points that affect the advertising value of a player, and prize money), detailed intermediate performance data, and rich heterogeneity in terms of relative abilities. Professional tennis is a sport with a high degree of gender equality. All major tournaments feature competitions for both genders, with identical facilities and, to a large degree, equal prize money.2 Career opportunities for female and male players have become more equal over time, including substantial opportunities to augment prize money with revenues from advertising and other activities.

2Equality in prize money is paralleled by off-court earnings, as illustrated by rankings of highest-paid tennis players, which counts both on- and off-court earnings. For the 12 months until June 2019, 5 of the 10 highest paid tennis players were female (Forbes 2019b). Rankings of female athletes overall emphasize the outstanding role that tennis has for earning levels of women: 10 of the 10 highest paid female athletes are tennis players (12 of the top 15) (Forbes 2019a).
2. Data and institutional setting

In order to win a set in tennis, a player must win a game when s/he is the returner (“break serve”). Thus, a break difference (positive or negative) has a significant effect on the overall win probability. While a player with a break lead only has to hold serve—which is much easier than to break serve—and preserve this lead, a trailing player has to make up for the deficit in order to avoid losing the set (or match). Consequently, experiencing the risk of conceding a break by winning a contested game will pose as a barely avoided setback.

Focusing on data from professional tennis permits to differentiate fundamental situations in performance evaluation. When a contestant experiences a contested game s/he is serving, but the game is won, the relative performance between the contestants is even. No change in the win probability based on the intermediate score is observed, irrespective of how contested the game was or how many points the opponent was able to win.

We use data from 12,839 top-level tennis matches to estimate the effect of experience a contested serve game on subsequent performance. In total, we observe 4,955 matches for male players competing in Association of Tennis Professionals (ATP) tournaments, and 7,884 matches for female players organized by the Women’s Tennis Association (WTA). The data provide detailed information about player characteristics, the WTA and ATP ranking and points of all players, and the exact information on how each point of the match was decided. We observe each game from the perspective of the return player. When a return player experienced a contested game —ie a game taking the serving player 8 or more points to hold serve—in the previous serve game, s/he has the feedback of past low performance, without losing the game. In Tennis, any game lasting 8 or more points will feature at least one situation where the server and returner are tied at 40 : 40 (deuce). In this situation, both players need to win 2 more points to decide the game. Subsequent performance, which is the outcome of interest, is the ability to score a break in the return player game. We only observe tennis games where competitors always compete against opponents of the same gender. In our data, we only observe matches within gender. This rules out potential distortions from variations in the gender compositions of contests (Booth & Yamamura 2018).

Panel (a) of Exhibit 1 illustrates the probability of a contested game for all return games in our estimation sample. The probability of a contested game for ATP matches is significantly lower at about 23% for return games 1 through 10. The corresponding probability for WTA matches is just below 36%. This difference is likely due to different physical prerequisites of female and male players who compete on a court with identical measurements. Our instrument circumvents the problems that arise from ex-ante differences in the probability of a contested game. In particular, Sections 3 & 4 will show that the instrument constitutes an almost identical exogenous shock for both genders.

3. Empirical approach

Tennis, like almost all form of contests, features heterogeneous contestants. Heterogeneity in terms of ability will change over the course of a match. Relying on a simple OLS approach to estimate the effect

3In the case of a tie-break at score 6:6, it is necessary for one player to break serve of the opponent on at least one single point in the tie-break. This is the case because tie-breaks can only be won with a decisive point margin equal or greater than 2.

4All data are available at github.com/JeffSackmann
of performance in game $t-1$ on subsequent performance in t will result in biased estimates from omitting ability (of both players) as a key variable. While WTA and ATP rankings provide a proxy for abilities, it is impossible to sufficiently control for all differences in ability.5

Winning a contested serve game or successfully defending break points does neither change the probability to lose the set, nor of the overall contest. In tennis, only game wins count, individual points are not counted towards winning a set or match. Consequently, it represents a form of spurious feedback which does not provide an incentive to strategically shift effort allocation decisions of contestants. Cohen-Zada et al. (2017) identify an alternative channel through which a past event, which has no objective effect on the probability to win the contest, can affect future performance: psychological momentum (Adler 1981). Put simply, they investigate how –all else equal– entering the next stage of a contest with a win compared to entering after just having lost. Their findings suggest that male contestants benefit from positive psychological momentum, while female athletes do not.

To estimate the causal effect of performance feedback across games, we estimate

$$break_{m,t} = \alpha + \gamma \text{contested}_{m,t-1} + X_{m,t}^\prime \beta + \delta_r + \xi_s + \theta_m + \nu_{m,t},$$

where the dependent variable is equal to 1 if the game t results in a break, 0 otherwise. $X_{m,t}$ includes a set of control variables. To control for unobserved heterogeneity, we include returner fixed-effects, δ_r, intermediate score when entering game t dummies ξ_s, and match-set fixed-effects θ_m. The variable $\text{contested}_{m,t-1}$ measures performance of game $t-1$: it is equal to 1 if game $t-1$ takes 8 or more points to find a winner, 0 otherwise. The coefficient γ measures the causal effect of experiencing (and winning) a contested serve game in $t-1$ on the performance in the observed return game t.

When investigating the causal effects of intermediate performance in contests, one faces the paramount endogeneity problem that falling back in a contest is related to the relative ability of the contestants. Like in any other form of contest, relative performance outcome is affected by short-lived factors influencing situational ability. In particular, we are not able to observe how competitive (or balanced in abilities) the match is throughout all observed games. The more balanced –i.e. the more equally able both contestants are– the more likely serve game $t-1$ will be contested, and the less likely a break in t will be the outcome. While we use match fixed-effects to hold match-time invariant factors constant, over the course of the match the momentum can shift multiple times, resulting in phases where players are relatively more or less competitive. Consequently, we expect OLS estimates of equation 1 to suffer from a positive omitted variable bias.

We use double faults during the first three points of game $t-1$ as an exogenous shock on the probability observing a contested game $t-1$, i.e. a game where the player on serve needs 8 or more points to hold serve. In professional tennis, a serving player has two attempts to place the serve inside the corresponding serve box on the field of the opposing return player. If both serves fail, the point is scored by the returner and a double fault is recorded. It is a plausible argument that very subtle mistakes will lead to double faults, supporting the argument of a rare and quasi-random event. We use only the first three points as any game is decided in at least a minimum of four points. Doing so, we can rule out using double faults that are a result of increased pressure at break points or excessive risk taking as a strategy to make up for large within-game deficits. Our binary instrumental variable (IV) is defined as

5Our sample includes matches where both contestants have a WTA or ATP ranking of 300 or better. This ensures a more homogeneous sample of players.
\[Z_{t-1} = \mathbb{1} \left(\sum_{p=1}^{3} \text{double fault}_{p,t-1} > 0 \right) \]

where \(Z_{t-1} \) is equal to 1 if at least one of the first three points in game \(t-1 \) is decided by a double fault. Panel (b) of Exhibit 1 illustrates the relative frequency of all cases with 1 or multiple double faults in our data. Double faults – while more frequent for female players\(^6\) – are a rare event. To avoid potential direct effects of our instrumental variable on game outcome in \(t \), we use only observations where the break difference in \(t-1 \) was 0. Doing so, we can rule out that our IV is not exogenous but a result of lack of concentration, reduced effort, or increased risk due to the score difference in \(t-1 \).

To solve the omitted variable problem arising from the unobserved component of situational ability, we propose a two-stage IV model to identify the causal effect of our specific past-performance measure on current performance. We instrument \(\text{contested}_{m,t-1} \) by using information on double faults during the first three points in game \(t-1 \). The first stage is specified as

\[\text{contested}_{m,t-1} = \pi_0 + \pi_1 Z_{m,t-1} + X_{m,t} \phi + \xi_t + \theta_t + \nu_{m,t}. \]

We focus on situations where the server is either one game behind or exactly even. These situations are defined by a set’s initial serve order and no player has the advantage or disadvantage of a break. Including games with a larger intermediate score difference will threaten our identification strategy, as double faults may not be fully exogenous, but a result of large intermediate score differences. For example, a server may have a substantial lead and thus adapt risk taking by changing speed and placement of their serve. A serving player could also face a large deficit, reduce serve effort and concede the set. The double fault probability for female and male players could be affected by an increase of the intermediate score difference. Focusing on game difference of 0 or \(-1\) avoids that the previous serve game being contested is the result of a situational decrease in the performance of any player. Panel (a) of Exhibit 2 illustrates the mean value of our binary instrument: the probability to observe a double fault during the first three points is not statistically different at a game difference of 0 compared to \(-1\). 166,328 (37.56\%) of the total of 442,847 return games are consequently used in the analysis.

In addition to the intermediate standings or pre-match relative ability, other unobserved factors could pose a potential threat to our identification strategy. For example, a player could experience a period of physical discomfort or a temporary lack of concentration that will result in one or more double faults in her serve game while also affecting the performance in the subsequent return game as well as the following serve game. If this were the case, players would record multiple games with double faults during the first three points when on serve during such a period. In our data, however, more than 92\% of all female and 88\% of all male player-set combinations exhibit none or only one game where the instrumental variable is equal to 1. This rejects the hypothesis that double faults (and thus our IV) are results of extended periods of inferior performance which could induce double faults as well as poor play in subsequent return games.

Even within serve games, we do not see serial correlation of double faults during early points. We\(^6\) Women make more double faults as a result of different physical endowments for female and male players who compete on a court with the same specifications. Krumer et al. (2016) show that the serve advantage is larger for male players, as long as the physical characteristics are not controlled for.
regress indicators of a double fault at points 2 and 3 of a particular serve game on a binary variables indicating whether a double fault was observed at point 1, 2, or both. The results are tabulated in panel (a) of Exhibit 3. We estimate no statistically significant association between double faults during the first three points of a serve game for male players, irrespective of the particular timing. For female players we find a similar pattern, with the exception of the association between a double fault at the first and the second point. For this case, we estimate a negative association of -0.7 percentage points, significant at the 5-percent level. This estimate is likely economically insignificant and too small to pose any threat to the identifying assumptions. The small and negative effect is also very short-lived, as there is no effect of a double fault at the first point beyond the second one. In order to avoid a second consecutive double fault, female players seem to increase focus for the second point when on serve and having recorded a double fault at the game’s initial point.

The exclusion restriction is violated if double faults in game $t-1$ directly affect performance in game t, beyond acting as an exogenous shock to increase the probability to observe contested games $t-1$. A player on serve in $t-1$, for example, could feel lingering mental effects by being upset over having committed a double fault. Although game t will feature the observed player in a completely different task as the returner, the general level of play could be affected. We test this by regressing the probability to win points 4 through 8 on our instrument, i.e. a variable indicating if at least one of the 3 points before were decided by a double fault. The results are presented in panel (b) of Exhibit 3. We estimate no association of the instrumental variable and the probability that the server wins any of the subsequent points for male players. For female players, there is a short-lived relationship, as the probability to win points 4 and 5 decrease by 1.6 and 1.0 percentage points. No significant association is found beyond point 5 of the same game. While double faults are associated with a short-lived decrease in performance, this association is not reaching beyond serve game $t-1$.

Panel (a) of Exhibit 1 demonstrates that contested games are more likely for female players during all 12 games of a set. This corresponds to findings by Krumer et al. (2016) who investigate gender differences in the overall break probability, relating them to differences in physical endowments. This should not pose a threat to our identification, as we compare contestants of equal gender.

Finally, increased importance to perform and hold serve could lead to strategic changes in risk-taking. Change in risk during serve (e.g. by adapting speed or placement) might affect our IV and outcome variable simultaneously. Panel (b) of Exhibit 2 rejects this potential threat to our identification strategy: double faults during the first three points of any serve game relevant in our sample (2-11) are not more likely in later stages of a set compared to early games. Risk-taking might vary as sets progress, but our IV is unaffected.

4. Main results

We measure the causal effect of experiencing a contested game on relative performance on the next game. The results are tabulated in Exhibit 4, with the main IV-results in Column (3) for women and Column (8) for men. We estimate no significant effect of winning a contested game $t-1$, compared to a decisively won game, on the probability to observe a break in game t. The point estimate of γ is small at 0.035 and not significant. For female players, however, we estimate a significant and sizeable effect of -0.117. Female players suffer in terms of relative future performance as they survive the scare of having won a contested serve game in $t-1$.

The first-stage results for both genders confirm that the probability to observe a contested game of 8 or more points in game t increases if one or more of the first three points in the game are decided by a double fault: 13.9 for female and 13.2 percentage points for male players. Again, our instrument is sufficiently strong at first-stage F-statistics of 365 for the women’s sample, and 395 for the men’s sample. By constituting an almost quantitatively identical exogenous shock for both genders, our instrument solves the problems that arise from gender differences in the probability of a contested game.

In a second step, we change the type of performance feedback slightly and focus on successfully defending one or multiple break points. Defending break points is an alternative proxy for a contested game in which the opposing player had at least one chance to win the game and break serve. This measure holds even more ambiguity, as defending break points can also be interpreted as a positive feedback.

Columns (4) and (5) of Exhibit 4 present the estimation results. The point estimate of the break-point effect is quantitatively and qualitatively similar to the main results presented above. The likelihood of a break for women after a game with defended break points decreases by 14.1 percentage points, male players are unaffected.

Finally, we use a continuous measure of the number of points observed in game $t-1$. We estimate that women’s probability to break serve in t decreases by 1.8 percentage points with each point played in $t-1$. No significant effect for male players is estimated. The first stages for both alternative feedback measures are again sufficiently strong.

The significant estimates for women cannot be attributed to shifts in server dominance due to previous long and severely contested games in $t-1$. Players on serve, according to this explanation, could suffer more from physical or mental exhaustion if the game consisted of a relatively high number of points. Panel (a) of Exhibit 1 rejects this alternative explanation, as we do not see an increase in the probability to observe a contested game (i.e. a decrease in server dominance) as the match progresses. This suggests that the advantage a player on serve has, for female and male players, is not affected by the physical tiring of players. The confrontational structure of tennis supports this, as both players should tire comparably as they both experience contested games in a similar way as direct opponents.

5. Potential channels and robustness

The channels, in terms of particular situations or individual characteristics, affecting how agents react to past performance concerning future performance or effort provision are mostly unknown (Meier et al. 2020). As introduced in Sections 1 and 3, the treatment we investigate consists of ambiguous feedback in the sense that it can either cause positive or negative psychological momentum. In this section, we dig deeper to find evidence for either a positive or negative effect. Our setting also provides an ideal environment to study heterogeneous effects and shed some light on the driving forces behind the causal effect of past on future performance.

Relative ability So far, we cannot relate our main result to either a positive momentum effect for the server, or a negative effect for the returner. Relative ability, however, can provide some insights. Our data captures relative ability in a match by the ranking and the associated ranking points of both contestants. When distinguishing between clear underdogs and favorites in WTA matches, we estimate

\[\text{As an alternative, we combine our main measure of contestedness of game } t-1 \text{ and the break point variable. Both variables are correlated at 0.77. The estimates confirm our main findings.}\]
a significant negative momentum effect only for underdogs (Exhibit 5, panel a). We interpret this as negative momentum for the observed underdog player on return. It is counter-intuitive to expect favorites to benefit from positive momentum after almost breaking serve in $t-1$. Favorites should not experience such form of feedback as positive, as contesting the opposing underdog’s serve should be expected. Underdogs, however, should feel their initial disadvantage in ability even reinforced and suffer from negative psychological momentum. We estimate no effect for male favorites and underdogs.

Experience
The experience a competitor has in terms of interpreting intermediate performance feedback can play a role when reacting to pseudo setbacks. Our data provide an ideal setting to investigate the role of experience, as the career paths of female and male professional tennis players are highly similar. All players enter professional tournaments around an age of 18, typically without practicing any other profession beforehand. They will compete as long as they are able to rank below a certain threshold of the WTA or ATP rankings long enough, in order to have a chance to finance their playing activities and stay eligible for large tournaments.

To account for heterogeneity in experience, we split the overall female and male sample along the median sample age of 25 (WTA) and 27 (ATP). The results are illustrated in panel (a) of Exhibit 5. For female players, we estimate a negative performance effect only for the younger half of the sample. For male players, we measure no significant effect for younger players. For older male competitors, however, we estimate a positive and significant effect of winning a contested game on subsequent chances to break serve. Whereas experience for female players seems to mitigate negative psychological momentum, older male players benefit from “surviving” a contested serve game.

Absolute ability
A competitor’s ability is a crucial mediating factor for how performance feedback is interpreted. But it is ambiguous what the interaction is between ability and experiencing a spurious type of performance feedback. For example, high ability contestants could be unaffected by psychological momentum, as their expectations to perform are always high. On the other hand, players with high ability could make the strongest reduction in effort, as they should not expect to experience substantial competition and react stronger to psychological momentum. Indeed, we estimate that low-ability female players show a significant momentum effect; high ability players do not. Again, we find no effect for male players (Exhibit 5, panel c). This contrasts the findings of Shastry et al. (2020): their findings suggest that low-ability men do react to negative feedback, while high- and low-performing women attribute negative feedback — albeit a result of pure luck— to lack of ability.

Intermediate score
An important form of heterogeneity is the intermediate score or the progression of the contest in general. In all first sets, a negative performance (e.g. conceding a break) is least consequential: while a player leading by 1:0 has an incentive to avoid conceding a break because s/he has a chance to win the match in the current set, a player down 0:1 or tied at one set each also finds herself in a situation of increased importance to perform (note that all matches in our sample are decided by winning two sets, often referred to “best-of-three”). Any form of intertemporal effects of past on future performance should therefore be larger when the scare of almost going down a break is more pronounced. Players get an ambiguous type of feedback that the previous game was very close and contested, feedback that is potentially stronger the higher the importance to perform. Estimates illustrated in panel (d) of
Exhibit 5 confirm this hypothesis: female players competing in sets 2 and 3 experience a significant momentum that is even more pronounced.

Robustness We provide a series of robustness checks to support our main results. First, we estimate our model excluding game number 12 from the sample. Game 12 is special, as it is the only game that can end the set despite a break difference of 0 in \(t \). The pressure to perform for the player on serve is higher than in all other games, as losing serve will directly imply losing the set. A player under such pressure could perform worse. (Böheim et al. 2019). We find that the omission does not change our main results. Second, we test whether the inclusion of overly long games in \(t-1 \) change the psychological momentum effects. Estimation results from this extended sample do confirm our main results. Third, we omit observations from Grand Slam tournaments from the women’s sample. Again, our main results are confirmed, albeit estimated with less precision due to the fact that we lose a substantial part of the WTA sample. Finally, we use observations from the main draws only. These matches are all within the tournament tree, without initial qualifying matches. All main results are confirmed. The threshold of 8 points to define a contested game—despite it’s special position within the rules of tennis by indicating deuce—may seem arbitrary. Alternative definitions of >6 or >10 points played in game \(t-1 \) for contested games confirm our main results.

6. Discussion and Conclusion

Our estimates indicate a causal effect of past on future performance for female professional athletes, and no feedback effect for men. The causal effect emerges from performance feedback that a player had difficulties in winning a stage of the contest, without actually losing the stage. We call such a stage a “contested game”. Losing the stage would directly and substantially impact winning probabilities, as losing a serve game is the fundamental ingredient to lose a tennis match.

Women experience a negative causal effect of 12 percentage points to score a break in the game following a contested game. Male players do not experience any effect. Identifying potential channels, mostly inexperienced and low-ability female competitors are affected negatively. Women who are underdogs in a match experience a decrease in performance after contested games, which demonstrates that relative ability of the contestants influences the effect of intermediate performance. The effect is also more pronounced in stages of the contest where importance to perform is high.

We interpret our results as negative psychological momentum. Women might interpret a contested game in the past as a specific form of negative feedback, subsequently triggering negative momentum and decreasing performance. Men, in contrast, do not react with performance decrements. For both genders, experience leads to a more positive effect of a contested game. Experienced women have no feedback effect, and experienced men have a positive feedback effect. Our findings could also be explained by gender differences in the reaction to certain types of performance feedback. Female and male children are found to react differently to positive procedure feedback (Henderlong & Lepper 2002). Experiencing a contested game when on serve is related to procedure feedback: competitors receive feedback on how they won the game. Our results suggest a gender gap in the reaction to negative procedure feedback for adult competitors who are experts in their domain.

8We do not use observations from men’s Grand Slam matches, as these matches are played in best-of-5 format. Best-of-5 matches will likely have too many underlying structural differences from best-of-3 matches as used in our analysis.
The results of our analysis have large implications for a multitude of different settings. For example, we shed new light on the optimal design of contests and, in particular, potential means of providing information on intermediate relative performance for both genders. Gender specific long-lasting consequences of feedback on past performance for career development are also of concern (Oreopoulos et al. 2012, Schwandt & Von Wachter 2019, Von Wachter 2020). Contrasting previous results, our estimates suggest different reactions of women to negative shocks on past performance.

Applied to an educational setting, our results mean that male students should remain unaffected by psychological momentum triggered by performance feedback. However, we would expect undesired detrimental effects on effort of female students. Revealing to them that they were close to failing a mid-term exam due to some purely random exogenous shock (e.g. illness) could have significant negative effects for subsequent exams. This undesirable effect would even be stronger for low-ability individuals, both for people having low absolute ability and for people that just are underdogs in the respective competition.
References

Azmat, G., Bagues, M., Cabrales, A. & Iriberri, N. (2019), ‘What you don’t know... can’t hurt you? a natural field experiment on relative performance feedback in higher education’, Management Science 65(8), 3714–3736.

7. Appendix

Exhibit 1 — Descriptive analysis

(a) Probability of a contested game, by gender and game number

(b) Relative frequency of contested game along the progression of a match

(c) Relative frequency of game durations, by gender

(d) IV by intermediate standing

Notes: Panel (a) presents the probability to observe a contested game by player gender and game number. All games and intermediate scores are included. Panel (b) plots the fraction of serve games counted as contested in the overall sample of all games, by gender and game number (continuous over all sets). Panel (c) illustrates all observed game durations in points, by gender of the players. Only games shorter than 18 points are included in our main analysis. Panel (d) illustrates the relative frequency to observe double faults at the first three points (or combinations) by a serve game.
Panel (a) illustrates the probability to observe at least one double fault during the first three points for different standings in terms games won by the player on serve, minus games won by the player returning. Only games that were used to construct our instrumental variable (games 1 through 11 of a set) and a break differences of 0 are used.

Panel (b) illustrates the probability to observe at least one double fault during the first three points for all games that were used to construct our instrumental variable (games 1 through 11 of a set).
Exhibit 3 — Testing the validity of the instrumental variable: association of past and future double faults

(a) Association of past and future double faults

<table>
<thead>
<tr>
<th></th>
<th>male players</th>
<th>female players</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) DF-P2</td>
<td>(2) DF-P3</td>
</tr>
<tr>
<td>double fault P1</td>
<td>-0.007**</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>double fault P2</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>serving player FEs</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>game score FEs</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>match×set FEs</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

N = 117,135 118,655

Notes: Robust standard errors clustered on the match-set level in parentheses. *, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level. The dependent variable for columns (1) and (5) is a binary variable equal to 1 if the second point of the observed serve game t is decided by a double fault, 0 otherwise. The dependent variable for columns (2) through (5), and (6) through (8) is a binary variable equal to 1 if the third point of the observed serve game t is decided by a double fault, 0 otherwise. a Binary variable equal to 1 if the first point in the observed serve game is decided by a double fault, 0 otherwise. b Binary variable equal to 1 if the second point in the observed serve game is decided by a double fault, 0 otherwise.

(b) Association of instrumental variable on probability to win subsequent points

<table>
<thead>
<tr>
<th></th>
<th>men's matches</th>
<th>women's matches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>point 4</td>
<td>point 5</td>
</tr>
<tr>
<td>IV</td>
<td>-0.006</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>serving player FEs</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>game score FEs</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>match×set FEs</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

R² = 0.176 0.206 0.285 0.394 0.402 0.205 0.226 0.287 0.398 0.390

N = 117,135 92,368 56,434 20,982 20,982 118,655 98,995 64,841 25,855 25,855

Notes: Robust standard errors clustered on the match-set level in parentheses. *, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level. The dependent variable is equal to 1 if one of points number 4 through 8 is won by the player on serve, 0 otherwise.
Main results: effect of having successfully defended at least one break point in \(t - 1 \) on performance in \(t \)

<table>
<thead>
<tr>
<th></th>
<th>women</th>
<th>men</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t - 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>contested game in (t - 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1 = yes, 0 = no)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instrumental variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.025***</td>
<td>-0.016***</td>
<td></td>
</tr>
<tr>
<td>(0.005)</td>
<td>(0.004)</td>
<td></td>
</tr>
</tbody>
</table>
| \(\text{OLS}^a \) | \(\text{RF}^b \) | \(\text{IV-main}^c \) | \(\text{IV-alt I}^d \) | \(\text{IV-alt II}^e \)
| \(\text{avg. game duration before } t - 1 \) | | | | | | | | |
| -0.002 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001 |
| \(0.001 \) | \(0.001 \) | \(0.001 \) | \(0.001 \) | \(0.001 \) | \(0.001 \) | \(0.001 \) | \(0.001 \) | \(0.001 \) |
| \(\text{double faults before } t \) | | |
| -0.003*** | -0.002*** | -0.006*** | -0.006*** | | |
| \(0.001 \) | \(0.001 \) | \(0.002 \) | \(0.002 \) | | |
| \(\text{add. binary controls}^f \) | \(\text{yes} \) |
| \(\text{returner FEs} \) | \(\text{yes} \) |
| \(\text{match\times FEs} \) | \(\text{yes} \) |
| \(\text{First stage coef.}^g \) | \(0.139*** \) | \(0.116*** \) | \(0.951*** \) | \(0.132*** \) | \(0.107*** \) | \(0.966*** \) |
| \(\text{F. stat.}^h \) | \(365.256 \) | \(300.438 \) | \(662.441 \) | \(395.313 \) | \(310.601 \) | \(879.252 \) |
| \(\text{N} \) | 70,165 | 87,835 |

Notes: Robust standard errors clustered on the match-set level in parentheses. *, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level. The dependent variable (mean 0.359, std. dev. 0.480 for women, mean 0.205, std. dev. 0.404 for men) is 1 if the observed return game \(t \) ends in a break, 0 if it is won by the player on serve. Only observations are used where the score differences in terms of breaks is equal to 0 for \(t \) and \(t - 1 \). Consequently, the player on return in \(t \) has won the previous game in all cases. Singleton observations are dropped and not reported in the number of observations. \(^a \) Results obtained by estimating model 1 with simple OLS. \(^b \) Results for estimating the reduced-form model of model 1. \(^c \) IV estimates of model 1. The dependent main explanatory variable is equal to 1 if the serve game \(t - 1 \) (from the perspective of the returner in \(t \)) is categorized as contested, 0 otherwise. A contested serve game is defined by the number of points needed to find a winner: contested means \(\geq 8 \) points. \(^d \) IV estimates of model 1. The main explanatory variable (mean 0.171, std. dev. 0.376 for women, mean 0.137, std. dev. 0.344 for men) is equal to 1 if the serve game \(t - 1 \) (from the perspective of the returner in \(t \)) is won after defending at least one break point. \(^e \) IV estimates of model 1. The main explanatory variable is equal to the number of points played during serve game \(t - 1 \) (from the perspective of the returner in \(t \)) needed to find a winner. \(^f \) Additional binary controls include dummy variables indicating the score difference before game \(t \) in terms of games from the returning player's perspective. In addition, we include binary variables indicating bins of absolute WTA or ATP ranking points, as well as bins for the WTA/ATP ranking. \(^g \) Coefficient of the instrumental variable in the first stage (model 1). \(^h \) Cragg-Donald Wald F statistic test for weak identification.

Exhibit 5 — Identification of potential channels

(a) Experience: momentum setbacks

(b) Relative ability: momentum setbacks

(c) Absolute ability: momentum setbacks

(d) By set score: momentum setbacks

Notes: Panel (a) presents the result from estimating model 1 with split samples. For female players, we split the sample into young (≤ 25) and older players (> 25), which is roughly the sample median age for all WTA observations. In analogy, we split the sample of male players along the age of 28. Overall, players in the ATP sample are older. Panel (b) plots the estimation results for splits along relative ability. We define favorites as players who have more ranking points than their opponents. Underdogs have fewer points. Panel (c) illustrates estimation results for samples of high and low absolute ability. Low ability is defined as having less than 1000 WTA or ATP ranking points before the observed match, high ability as having more than 1000 points. Finally, panel (d) plots the different estimates along the course of the game for all first sets, and later sets.