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Abstract

Ineffective fundraising lowers the resources charities can use for goods provision. We

combine a field experiment and a causal machine-learning approach to increase a char-

ity’s fundraising effectiveness. The approach optimally targets fundraising to individ-

uals whose expected donations exceed solicitation costs. Among past donors, optimal

targeting substantially increases donations (net of fundraising costs) relative to bench-

marks that target everybody or no one. Instead, individuals who were previously asked

but never donated should not be targeted. Further, the charity requires only publicly

available geospatial information to realize the gains from targeting. We conclude that

charities not engaging in optimal targeting waste resources.
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1 Introduction
Fundraising is a costly activity: The 25 largest US charities spend between 5% and 25%

of total donations on fundraising expenses (Andreoni and Payne, 2011). These numbers

are a matter of concern for two reasons. First, high fundraising costs leave a smaller

proportion of overall donations to finance charitable projects. This can lead to an under-

provision of the goods and services that charities provide and may, thus, lower welfare if

the donors’ utility depends on provision levels (Rose-Ackerman, 1982; Name-Correa and

Yildirim, 2013). Second, high fundraising costs also matter from the charity’s perspec-

tive because donors are averse to financing overhead costs (Tinkelman and Mankaney,

2007; Gneezy et al., 2014). Hence, charities with excessive fundraising expenses will

be less successful in raising donations. In conclusion, reducing disproportional fundrais-

ing costs can be crucial, from both the welfare and charity-management perspectives.

However, while there is broad literature studying how different fundraising instruments

such as matching grants and unconditional gifts affect donors’ behavior (surveyed by

Andreoni and Payne, 2013), previous research has paid less attention to how charities

can increase the cost-effectiveness of fundraising.

In this paper, we exploit a causal machine-learning-based approach to maximize a

charity’s fundraising effectiveness: optimal targeting of fundraising activities to potential

donors.1 Machine-learning-based optimal targeting exploits the possibility that, due to

heterogeneity in donors’ preferences, the effects of any fundraising campaign are likely

heterogeneous across individuals with different observable characteristics.2 Charities

that ignore this heterogeneity may engage in loss-leading fundraising, for example, by

directing a costly fundraising instrument to notorious nondonors or donors who, in re-

sponse to the instrument, do not increase their donations enough to cover the instru-

ment’s cost. Against this backdrop, our key contribution is to use machine learning to

identify a targeting rule (out of all feasible rules) that is optimal in the sense that it

maximizes expected profits by avoiding loss-leading solicitations.3 Consequently, chari-

ties that engage in this type of optimal targeting can increase net donations raised (i.e.,

donations net of fundraising costs) and, hence, provide more goods and services.

We demonstrate the potential of machine-learning-based optimal targeting using a

common fundraising instrument as an example: small unconditional gifts that accom-

pany a solicitation letter. In theory, such unconditional gifts should increase donations

by triggering a reciprocal reaction in recipients (Falk, 2007). In practice, the evidence

on the effectiveness of unconditional gifts is, however, mixed. Some studies suggest that

1See Athey and Imbens (2019) for a review of causal machine-learning methods.
2For example, donation motives (such as altruism, warm glow, and reciprocity) are heterogeneously

distributed across individuals (Falk et al., 2018). Consequently, responses to fundraising activities that
leverage (some of) these motives are likely heterogeneous as well.

3A targeting rule is feasible if it is a deterministic function of the observable characteristics.
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unconditional gifts are an effective fundraising instrument, while others find that they

do not affect average donations or even backfire and lower giving (see the literature sec-

tion for a discussion). This type of effect heterogeneity might very well operate through

individual heterogeneities, such as heterogeneous social preferences. Thus, fundraising

gifts offer a promising context to study the benefits of machine-learning-based optimal

targeting.

The goal of optimal targeting lies in directing a fundraising instrument (a gift in our

example) to a subset of individuals such that the fundraising campaign’s expected profits

are maximized (i.e., the additional expected net donations collected by the campaign).

Yet, who should charities target for that purpose? By definition, the optimal targeting

rule states that the profit-maximizing targets are the so-called net donors: individuals

whose expected additional donation is higher than the marginal fundraising cost. In an

ideal world, the charity would know each individual’s donation with and without the

fundraising instrument (i.e., the gift) and could, thus, determine the set of net donors.

In reality, however, this set is unknown to the charity. The reason is that donations under

both conditions (gift vs. no gift) are unknown before the campaign. Moreover, even after

the campaign, the charity could still only learn a donor’s behavior under her assigned

condition. These complications motivate our approach to identify optimal targets for

fundraising activities.

Our approach to optimal targeting relies on two ingredients. First, it exploits random

variation in the assignment of an unconditional gift at the donor level.4 To induce this

variation, we teamed up with a charity that sends out solicitation letters to its donor base

once a year. In this setting, we randomly assigned almost 20,000 potential donors to a

gift treatment (in which individuals received the solicitation letter with a gift) and a con-

trol group (in which they received only the letter). Second, as previously highlighted,

our approach relies on machine-learning algorithms. Particularly, we let an algorithm

learn the relationship between the individuals’ observable characteristics and their ex-

pected donation behaviors in the experiment’s treatment and control groups (i.e., with

and without the gift). From this relationship, we then estimate the (out-of-sample) set

of predicted net donors who should be targeted.5 This procedure establishes what we

label the estimated optimal targeting rule. Importantly, although we cannot trace out

the causal effect of the characteristics that drive the heterogeneity, the policy-relevant

increase in net donations achieved by the targeting rule is causally identified.

More specifically, our paper draws on the following machine-learning methods. We

implement the optimal-policy-learning algorithm of Athey and Wager (2021), which ex-

tends the empirical welfare-maximization approach of Kitagawa and Tetenov (2018) by

4In principle, researchers could apply similar targeting methods to observational data.
5A benefit of the machine-learning approach is that it does not require a preanalysis plan. Cross-fitting

techniques counteract the dissemination of spurious results and ex post “p-hacking.”
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machine learning. In our main specifications, we then estimate optimal targeting rules

with the Exact Policy-Learning Tree of Zhou et al. (2018) and show the sensitivity of

our results to various alternative estimators (Logit, Logit Lasso, Classification and Re-

gression Trees, and Classification Forest). Regarding data, we feed our algorithm with

information from various sources and of different types, including socioeconomic char-

acteristics, past donation data, and geospatial information. The geospatial information

consists of publicly available information from Google Maps on economic and cultural

facilities close to the potential donor’s place of residence.

Our analysis yields two sets of main results. The first set concerns the warm list (i.e.,

the sample of previous givers). For this sample, we demonstrate that machine-learning-

based optimal targeting substantially boosts the charity’s net donations compared to

benchmarks in which everybody receives the gift (increase relative to this benchmark:

13.8%) or no one receives the gift (increase: 14.3%). We also show that these pos-

itive effects on net donations do not merely reflect pull-forward effects (i.e., shifts of

donations from a later year to the experimental year). Moreover, we highlight that our

fundraiser can reap the full benefits of machine-learning-based optimal targeting by rely-

ing on data that should be easily accessible by all charities. For the gains of our approach

to materialize, knowledge about who is in the warm list and publicly available geospa-

tial information is sufficient. This result suggests that our approach should be widely

applicable. The second set of results concerns the cold list (i.e., the sample of previous

nondonors). In contrast to the warm list, machine-learning-based optimal targeting in

the cold list does not increase net donations compared to the no-gift benchmark. Fur-

thermore, the estimated optimal targeting rule does not broaden the donor base enough

to justify the gift’s additional fundraising costs. We conclude that, in our context, the

charity should not target the gift to cold-list individuals at all. Whereas the details of our

findings may well be specific to the setting, a general conclusion is that charities that do

not optimally target their fundraising efforts waste significant resources.

The paper is organized as follows. Section 2 outlines our contributions to the litera-

ture, Section 3 explains the institutional background and design of the experiment, and

Section 4 describes our empirical strategy. Section 5 discusses our results, and Section

6 concludes. Online Appendices A–G provide supplementary materials.

2 Contributions to the Literature
In the following, we detail how our study relates and contributes to various literature

strands in economics and marketing.

Economics literature. The first relevant strand of literature, the theoretical fundrais-

ing literature in public economics, provides a theoretical underpinning for why fundrais-

ing targeting can be beneficial. The argument is as follows. Many charities have prop-

4



erties similar to privately provided public goods (Andreoni and Payne, 2013): contribu-

tions are voluntary and the provided goods are nonexcludable and nonrivalrous. In such

a context, fundraising tools can counteract free-riding and, hence, underprovision prob-

lems (see e.g., Andreoni, 1988; Morgan, 2000; Vesterlund, 2003; Andreoni and Payne,

2003, 2013).6 However, if fundraising is costly and charities must compete for donors,

competition can push the costs to such high levels that the total service provision falls

(Rose-Ackerman, 1982; Aldashev and Verdier, 2010; Aldashev et al., 2014). Targeting

of fundraising instruments can then be a tool to maximize donations net of fundraising

costs and, thus, provision levels. Specifically, Name-Correa and Yildirim (2013) show

that a charity’s optimal strategy is to target net donors. However, for charities, it is

challenging to follow this theoretical rule, as they cannot easily identify these optimal

targets. Along these lines, our contribution to this literature is to explore how a data-

driven machine-learning approach can help charities predict the set of net donors.

A second emerging literature strand closely related to our work empirically studies

how to target fundraising among heterogeneous donors. We are aware of only two pa-

pers that examine this topic. First, Adena and Huck (2019) apply a targeting strategy

to matching gifts, a fundraising tool where funds collected before a campaign top up do-

nations above a threshold. Their main result is that charities can crowd in donations by

conditioning these thresholds on past giving behavior (i.e., the thresholds are targeted).

Second, Drouvelis and Marx (2021) focus on belief-based targeting. They conclude that

charities can increase net donations by targeting information treatments to potential

donors who hold incorrect (low) beliefs about others’ donations. Our paper differs from

these studies in two dimensions: First, Adena and Huck (2019) and Drouvelis and Marx

(2021) both build on conceptual considerations to identify dimensions of heterogeneity

used for targeting. Following Athey and Wager (2021), our paper takes a more agnostic

and more flexible, data-driven approach. Particularly, our machine-learning algorithms

independently identify the most influential dimensions of heterogeneity based on ob-

servable donor characteristics. Consequently, the resulting estimated targeting rules can

flexibly account for many different sources of heterogeneity (e.g., preferences or in-

come), as long as they correlate with individuals’ observable characteristics. Second,

instead of considering debiasing or threshold matching, we focus on the unconditional

gift as a different fundraising tool.

A third relevant literature strand is the literature on fundraising gifts (see, e.g., the

review of List and Price, 2012). While Falk (2007) documents that unconditional gifts

are a cost-effective tool to increase donations in the warm list, other studies paint a more

6Which tool is suited to increase provision depends on the context. Solicitation letters (perhaps provid-
ing return envelopes) counteract the underprovision problem in settings with transaction costs (Andreoni
and Payne, 2003). By contrast, leadership gifts oppose the underprovision of threshold public goods (An-
dreoni, 1988) and public goods under imperfect information (Vesterlund, 2003). Lotteries, in contrast,
can increase efficiency in standard public goods settings (Morgan, 2000).
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scattered picture. For example, Landry et al. (2010) find zero effects of gifts in the warm

list, and Alpizar et al. (2008) conclude that conditional on giving, gifts even lower con-

tributions. Yin et al. (2020) present similar results.7 We add to the looming discussion

on the causes of effect heterogeneity by showing that individual heterogeneity alone is

powerful enough to account for gifts’ negative and positive effects.8 In particular, in our

setting, some groups of potential donors increase donations in response to gifts, and

other groups reduce their donations. This finding persists if we restrict our sample to

the warm list only. While these findings are insightful in themselves, our main contri-

bution to this literature is to demonstrate that charities can effectively exploit the effect

heterogeneities to target gifts optimally.

By focusing on effect heterogeneity, we contribute to a fourth literature strand, het-

erogeneous responses to fundraising that identifies five forms of heterogeneity: (a) char-

acteristics of the charitable organization and the purpose of the charity (e.g., Okten and

Weisbrod, 2000; de Vries et al., 2015), (b) characteristics of the donors (e.g., Andreoni

et al., 2003; Andreoni and Vesterlund, 2001; Rajan et al., 2009; Wiepking and James,

2013), (c) donation motives or preferences of donors (e.g., Bakshy et al., 2012; Har-

baugh et al., 2007; Kizilcec et al., 2018), (d) past donation behavior (Schlegelmilch and

Diamantopoulos, 1997; Hassell and Monson, 2014), and (e) crowding out (Meer, 2017).

Instead of studying single, selected dimensions of heterogeneity, we combine a range of

individual characteristics and past donation behavior. Additionally, our paper adds a

rarely used determinant of heterogeneity to the analysis, geospatial characteristics. As

this information is easily accessible to charities, it is particularly beneficial for optimal

targeting.9

Marketing literature. Our paper also relates to two strands of literature on the target-

ing of marketing interventions. The first strand applies machine-learning techniques to

target marketing in contexts other than charitable giving. For example, Guelman et al.

(2015) and Ascarza (2018) study targeting of retention efforts to lower customer churn

in telecommunications, professional memberships, and insurance. Moreover, Fong et al.

(2019), Ellickson et al. (2020), Gubela et al. (2020), and Smith et al. (2021) study tar-

geting of recommendations, promotions, coupons, and pricing (mainly in online market-

ing). These studies not only consider contexts very different from ours, but also employ

other methods. Particularly, the papers estimate heterogeneous effects of (randomized)

7Thank-you gifts that charities hand out after a donation also seem to lower subsequent donations
(Newman and Shen, 2012). Eckel et al. (2018) directly compare unconditional and thank-you gifts and
show that donors are twice as likely to give when they receive a high-quality unconditional gift.

8Of course, differences in the overall setting (such as varying causes of charities) might also explain
why different studies come to varying conclusions.

9Dong et al. (2019) and Glaeser et al. (2018, 2020) show that geospatial characteristics are good proxies
for income and socioeconomic characteristics. One reason is neighborhood segregation (see, e.g., Heblich
et al., 2020).
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marketing interventions and transform them into a targeting rule by discretizing.10 Our

paper, instead, follows Athey and Wager (2021) and estimates the optimal targeting

rule directly (instead of first estimating the effect heterogeneity). To the best of our

knowledge, our paper is the first application of this novel, more direct method, explicitly

tailored for optimal targeting.11 The second relevant literature strand is the literature on

charitable marketing (see, e.g., Winterich et al., 2013; Kizilcec et al., 2018). While this

literature has studied targeting in charitable giving, it so far has not used the powerful

machine-learning-targeting toolkit. To sum up, the available studies deviate from our pa-

per either because they use machine learning in contexts other than charitable giving or

because they study targeting in charitable giving without using causal machine-learning

techniques.12

Methodological literature. Methodologically, we contribute to the small but rapidly

growing literature that applies machine-learning methods to target public and private

policies (e.g., Andini et al., 2018; Hitsch and Misra, 2018; Kang et al., 2013; Knaus et al.,

2020; Knittel and Stolper, 2019; Rockoff et al., 2011; Kleinberg et al., 2015). While these

papers consider such contexts as taxation and labor-market programs, our study is the

first that applies a fully fledged optimal policy learning algorithm like that of Athey and

Wager (2021) to the context of charitable giving. One of our goals is to provide an

intuitive introduction of the used methods to guide their application.

3 Experimental Design and Data
Our approach to derive a machine-learning-based optimal targeting rule proceeds in

three steps. First, we conduct a field experiment that randomly allocates our fundrais-

ing instrument, an unconditional gift. Second, we use machine-learning algorithms to

estimate the optimal targeting rule for this gift in a random subsample of the experi-

mental data while retaining the remaining sample. Third, we extrapolate the estimated

optimal targeting rule to the retained sample and apply off-policy-learning techniques

to assess the estimated rule’s out-of-sample performance. While this section details the

experimental design and data, Section 4 outlines the machine-learning and off-policy

learning approaches.

10The marketing literature labels this procedure “uplift modeling.” Economists call similar methods
“effect-based targeting.”

11Related machine-learning-based literature profiles or segments customers solely based on their re-
sponses under one condition. For example, Cui et al. (2006) and Kim et al. (2005) show that neural
networks are valuable tools to improve targeting in response models. Moreover, Abe et al. (2004) suc-
cessfully apply reinforcement learning to cross-channel marketing, and Schwartz et al. (2017) apply a
multiarmed bandit to target display advertising.

12See Simester et al. (2020) for a discussion of common data challenges of applying machine learning
to target customers “in the wild.”
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3.1 The Natural Field Experiment

In 2014, we implemented a natural field experiment in collaboration with a fundraiser of

the Catholic Church that operates in a German urban area.13 For decades, this fundraiser

has organized a large-scale, annual fundraising campaign: Once a year, it has mailed

solicitation letters to all resident church members, irrespective of previous donations.

This fund drive aims to finance local church-related projects, such as the renovation of

clergy houses, parish centers, or churches. Our experiment exploited this campaign by

(a) experimentally altering how the fundraiser contacted potential donors in 2014 and

(b) analyzing individuals’ behavior in 2014 and 2015.

Control group. Individuals in our experiment’s control group received the standard

solicitation letter, the contents of which remained unchanged from the pre-experiment

years. Particularly, the letter highlighted the fundraiser’s cause and asked recipients for

a donation. To lower transaction costs, the fundraiser distributed the solicitation let-

ter together with a remittance slip, prefilled with the fundraiser’s bank account and the

donor’s name. In the pre-experiment years, potential donors received identical transac-

tion forms.14

Gift treatment. Our design of the gift treatment closely follows Falk (2007). In 2014,

individuals in this treatment received the solicitation letter together with an uncondi-

tional gift. The gift consisted of three envelopes paired with different folded cards, pic-

turing Albrecht Dürer’s “immaculate flower studies” (see Figure 1). Further, we added

one sentence to the solicitation letter, stating that the fundraiser “would like to provide

the included folded cards as a gift.” The total per-unit cost for mailing the control-group

solicitation letter amounted to 0.43 euro (printing plus postage). In the gift treatment,

the per-unit cost increased by 1.16 euro (postcards and envelopes: 0.47 euro; boxing

and additional postage: 0.69 euro). Notably, our treatment consisted of a one-time in-

tervention. From 2015 onward, all individuals in the sample received a solicitation letter

very similar to the one distributed in the pre-experiment years.

Sample. In 2014, 26% of the urban area’s population were members of the Catholic

Church. We drew a sample from this population consisting of 2,354 warm-list individuals

(individuals who had donated at least once before the experiment) and 17,425 cold-list

individuals (individuals who had never donated before). These individuals were then

randomly allocated to the control and treatment groups, exploiting a stratified random-

ization scheme. Particularly, we assigned 1,180 of the warm-list individuals to the gift

13In 2015, we implemented a second experiment with two treatments, an unconditional gift treatment
and a gift treatment that framed the gift as a reward for past donations. We evaluate and compare the
effects of these differently framed gifts in a companion paper.

14For years, donations in the context of the fund drive could be made exclusively via bank transfer.
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Figure 1: The gift consisting of the three folded cards and envelopes

Notes: The gifts consisted of three different folded cards showing flower motifs from paintings of Albrecht
Dürer plus three envelopes.

treatment and 1,174 to the control group.15 By contrast, 2,283 cold-list individuals re-

ceived the treatment, while 15,142 were part of the control group.

The setting’s benefits. Our setting serves as a suitable testing ground for machine-

learning-based optimal targeting. First, as the fundraiser did not employ any targeting

strategies before the experiment, the setting offers a clean environment to study our

machine-learning approach’s potential. Second, it provides rich data that not only allow

us to estimate powerful targeting rules, but also enable us to test which type of data

are especially beneficial for machine-learning-based optimal targeting (see the following

description of the data). Third, because the fundraiser contacts all church members

exhaustively, the setting offers the possibility to study the cold and warm lists separately.

We, hence, can not only examine the optimal targeting of gifts among past donors, but

also explore whom to target in the process of acquiring new donors. Fourth, because we

were able to gather data for two postexperiment years, the setting allows us to study if

the estimated optimal targeting rule increases total donations or simply pulls forward

donations from 2015 to 2014. Fifth, because religious giving dominates the charitable

giving landscape (List, 2011), targeting is particularly relevant in this context.16

15The strata were defined based on list (warm vs. cold), gender, household type indicators, quintiles
of individuals’ predicted baseline willingness to give, and quintiles of age. To construct a proxy for the
baseline willingness to give in the treatment year, we first regressed an indicator variable for giving in the
year before the experiment on indicator variables for further lags of the giving indicator. We then used
the estimated model to predict the probability of giving in the treatment year (out of sample).

16For example, in Germany, church-related causes benefit the most from private giving: They receive
approximately 35% of total private giving (Deutscher Spendenrat, 2016). No other type of cause ben-
efits from a similarly high share of total donations. The numbers for the United States are very similar
(Andreoni and Payne, 2013).
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3.2 The Data

Data sources. Our study draws on two separate, comprehensive data sets. The first

set of data includes administrative records provided by the Catholic Church. The records

hold a number of socioeconomic characteristics, such as gender, marital status, and age.

Furthermore, they contain individual-specific information on donations for the years

2006–2015. Accordingly, we observe all potential donors’ donation histories for eight

pre-experiment years and their donations in the first two years after the experiment.

Our second data source is Google Maps. Specifically, we used the Google Maps API to

collect geospatial information on economic and cultural facilities near each individual’s

residence. We then merged this data with the administrative records based on postal

addresses. In particular, we collected the number of restaurants, supermarkets, medical

facilities, cultural facilities, and churches within 300 meters of each the home address.

We also web-scraped the distance from the home address to the central train station,

city hall, main church, and airport. Furthermore, we retrieved the elevation of the home

address. The main reason for using these geospatial characteristics is that they are read-

ily available to charities and are powerful proxies for income and other socioeconomic

characteristics (Dong et al., 2019; Glaeser et al., 2018, 2020) that likely explain response

heterogeneity. Taken together, our algorithms for optimal targeting rely on three types of

input data: (a) socioeconomic information, (b) information on past donation behavior,

and (c) publicly available geospatial information. Note that charities that manage to col-

lect even more comprehensive datasets could further improve machine-learning-based

optimal targeting.

Descriptive statistics. Table 1 reports the descriptive statistics for the donation amount

and the donation probability. Furthermore, supplementary tables either study the bal-

ance of observable characteristics across the warm and cold lists (see Table A.1 in On-

line Appendix A) or the control and treatment groups (see Tables A.2 and A.3). Several

distinctive features of the data stand out. First, unsurprisingly, cold-list individuals do-

nated much less in the first year after the experiment (average donation: 0.18 euro)

compared to warm-list individuals (average: 16.02 euro). Their donation probability

is also much lower. Similar results emerge when summing up the donations made in

the first two years after the experiment. Second, donations are highly right-skewed and

have excess kurtosis, highlighting that few donors give extraordinarily large gifts. The

following analysis highlights that, despite this data feature complicating our prediction

task, we are nevertheless able to estimate effective optimal targeting rules. Third, cold

list and warm list individuals differ in socioeconomic characteristics (see Table A.1).17

17On average, cold list individuals are younger, have a higher likelihood of being single, and tend to
have a shorter residency duration in the urban area. Individuals in the warm list donated an average
of four times, with a total donation amount of 126 euro over the eight years before the experiment. By
construction, cold list individuals have a donation history of zero donations. Individuals in the cold list
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Table 1: Descriptive statistics of donation amount and donation probability

Mean Std. dev. Skewn. Kurt. Min. Max.
(1) (2) (3) (4 (5) (6)

Panel A: Warm list
1st year after the experiment

A1. Donation amount (euro) 16.02 30.38 4.70 39.05 0 450
A2. Donation dummy 0.49 0 1

1st and 2nd year after the experiment
A3. Donation amount (euro) 30.48 53.19 4.96 49.23 0 900
A4. Donation dummy 0.57 0 1

Panel B: Cold list

1st year after the experiment
B1. Donation amount (euro) 0.18 3.00 38.39 2,049.4 0 200
B2. Donation dummy 0.009 0 1

1st and 2nd year after the experiment
B3. Donation amount (euro) 0.43 4.85 23.12 779.6 0 240
B4. Donation dummy 0.017 0 1

Notes: This table shows descriptive statistics for our primary outcomes, (a) the donation amount and (b)
variables indicating whether a person donated or not. We consider the warm list (Panel A) and cold list
(Panel B) separately. Further, we track our outcomes over two periods, the first year after and the first
two years after the experiment. For dummy variables, the first moment is sufficient to infer the entire
distribution.

This observation suggests that individual characteristics might explain heterogeneous

giving behavior. Fourth, the observable characteristics are very well balanced across the

treatment and control groups (see Tables A.2 and A.3).

4 Empirical Strategy
This section describes the estimation and identification strategy of machine-learning-

based optimal targeting rules and how to assess the rules’ out-of-sample performance.

We start by introducing conditional average treatment effects (CATEs) in Subsection 4.1.

The CATEs formally describe heterogeneous treatment effects as a function of observable

characteristics. In Subsection 4.2, we then introduce binary optimal targeting rules that

are related to the continuous CATEs. These rules maximize the charity’s net donations by

assigning individuals to either the targeted group or the untargeted group. Recall that

our approach directly estimates the optimal targeting rule. This feature distinguishes it

from approaches that first estimate the continuous CATEs and then derive the rules as

live, on average, closer to the city center (closer to city hall and the central station) than individuals on
the warm list. Close to the home address (within 300 meters), cold-list individuals have, on average,
more access to restaurants, supermarkets, medical and cultural facilities, and churches than warm-list
individuals.
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nonlinear transformations of these effects. In the final step, we discuss our classification

approach in Subsection 4.3. In Subsection 4.3, we further discuss how we measure our

targeting rules’ out-of-sample performance compared to benchmark rules.

4.1 Conditional Average Treatment Effects

Notation. We use the potential-outcome framework (Rubin, 1974) to describe the pa-

rameters of interest. The potential-outcome framework is useful when studying targeting

because it allows us to describe an individual’s reaction under different (counterfactual)

treatment conditions. The treatment variable Di indicates whether a fundraising gift was

sent to individual i (for i = 1, . . . , N), with

Di =

¨

1 when a gift was sent, and

−1 otherwise.

Yi(1) denotes the potential donations in response to the solicitation letter with a fundrais-

ing gift. Yi(−1) denotes the potential donations in response to the letter unaccompanied

by fundraising gifts.

Causal effects. Using the previous notation, the individual causal effects are

δi = Yi(1)− Yi(−1).

In an ideal world, the charity would know δi. It could then (exclusively) assign the

gift to individuals for whom δi exceeds the gift’s cost. However, because Yi(1) and Yi(−1)
cannot be observed simultaneously, the fundamental problem of causal analysis is that

δi is unobservable. Nevertheless, it is possible to identify and estimate group averages

of δi. For example, the average treatment effect (ATE), δ = E[δi] = E[Yi(1)−Yi(−1)], is

the expected average effect of the gift on donations. Moreover, there might be effect het-

erogeneity with regard to observable characteristics X i, which allows researchers to iden-

tify even finer-grained subgroup-specific effects. For example, Andreoni and Vesterlund

(2001) and Andreoni et al. (2003) show that men and women differ in their donation

behavior. In this vein, the CATE describes the influence of an individual’s characteristics

x on the expected average effect of sending the fundraising gift to the individual:

δ(x) = E[δi|X i = x] = E[Yi(1)− Yi(−1)|X i = x].

Identification of causal effects. The ATEs and CATEs are identified from observable

data under the stratified experimental design and the stable unit treatment value as-
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sumption (SUTVA) (see proof in Appendix B):

Yi = Yi(−1) +
1+ Di

2
(Yi(1)− Yi(−1)) ,

The strata characteristics, which we call Zi, are relevant to achieve identification. In con-

trast, the exogenous characteristics, X i, are potentially associated with heterogeneous

effects of the gift, but we do not need them for identification.

4.2 Targeting Rules

Optimal targeting rule. A targeting rule, π(X i) ∈ {−1,1}, is a deterministic function

that assigns the gift to prospective donors based on their observable characteristics, X i.

Under the rule, individuals with π(X i) = 1 receive the solicitation letter with the gift,

and individuals with π(X i) = −1 receive the solicitation letter without the gift. The

purpose of the optimal targeting rule is to maximize the expected net donation P(·) of

the fundraising campaign, defined as the expected donation minus the gift’s variable

costs. Formally, the expected net donation is

P(π(X i)) := E
�

Yi(π(X i))−
1+π(X i)

2
c
�

, (1)

where Yi(π(X i)) is the donation amount of individual i under the rule π(X i) and c are

the variable costs of the gift. We ignore fixed costs, as they do not alter the targeting

rule.

Benchmarks rules. To evaluate the gains of optimal targeting, we compare the ex-

pected net donations under the optimized rule P(π(X i)) to the expected net donations

under three benchmarks: a rule that assigns the gift to everybody (all-gift benchmark),

a rule that assigns the gift to no one (no-gift benchmark), and a rule with random al-

location (random-gift benchmark). First, we can contrast the optimal targeting rule to

the all-gift benchmark π(X i) = π1 = 1. For this benchmark, the expected net donation

is P(π1) = E[Yi(1)]− c. Consequently, the excess net donation of the optimal targeting

rule compared to this benchmark is

Q1(π(X i)) := P(π(X i))− P(π1) = E
�

π(X i)− 1
2

(δi − c)
�

.

Second, equivalently, we compare the optimal rule to the no-gift benchmark π(X i) =
π−1 = −1, under which the expected donations are P(π−1) = E[Yi(−1)]. Thus, relative

to this benchmark, optimal targeting increases net donations by

Q−1(π(X i)) := P(π(X i))− P(π−1) = E
�

1+π(X i)
2

(δi − c)
�

.
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Third, we consider the random-gift benchmark, πR, under which each individual has

a 50% probability of receiving the gift. Given that πR triggers the expected net donation

of P(πR) = 1/2 · (E[Yi(1) + Yi(−1)]− c), the excess net donation of the optimal rule is

QR(π(X i)) := P(π(X i))− P(πR) =
1
2

E [π(X i) (δi − c)]

= [Q1(π(X i)) +Q−1(π(X i))]/2.
(2)

The random rule can be viewed as a default option when no information about the effec-

tiveness of the fundraising instrument is available, and the fundraiser has no preferences

about the allocation of the instrument.

Two further points are of note. First, the optimal targeting rule which maximizes the

net donations P(·), also maximizes Q1(·), Q−1(·), and QR(·). The reason is that P(π1),
P(π−1), and P(πR) are constant. Second, for the estimation of the optimal targeting rule,

we maximize the sample analog of (2). Because we do not observe the individual causal

effects, δi, which we need to determine (2), we first discuss how to approximate these

parameters.

4.3 Estimation

To introduce our estimation strategy of the optimal targeting rule, we proceed in two

steps. In the first step, we discuss augmented inverse probability weighting (AIPW) to

estimate an approximation of the individual causal effects. In the second step, we show

how to use the AIPW score to estimate the optimal targeting rule.

Augmented inverse probability weighting. An essential ingredient for the optimal

targeting rule is δi. As we mentioned before, δi is unobservable and cannot be estimated

directly. However, an approximation score of δi can be sufficient to estimate the optimal

targeting rule. The AIPW score,

Γi = µ1(Zi)−µ−1(Zi) +
1+ Di

2
·

Yi −µ1(Zi)
p(Zi)

+
Di − 1

2
·

Yi −µ−1(Zi)
1− p(Zi)

,

is an example of such an approximation score.18 The so-called nuisance parameters

are the conditional expectations of the donations, µ1(z) = E[Yi|Di = 1, Zi = z] and

µ−1(z) = E[Yi|Di = −1, Zi = z], and the conditional probability that the gift was sent

p(z) = Pr(Di = 1|Zi = z). The latter is often called the propensity score. Under the

SUTVA and the experimental design, the expected value of the AIPW score identifies the

ATE δ = E[Γi].19 The conditional expectations of the AIPW score identify the CATEs,

18Alternatively, Kitagawa and Tetenov (2018) suggest inverse probability weighting scores, and Beygelz-
imer and Langford (2009) propose offset weighting scores.

19Note that the nuisance parameters, µ1(z) = E[Yi |Di = 1, Zi = z] = E[Yi(1)|Zi = z] and µ−1(z) =
E[Yi |Di = −1, Zi = z] = E[Yi(−1)|Zi = z], equal conditional expectations of the potential donations with
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δ(x) = E[Γi|X i = x]. For completeness, we sketch the identification proofs for the AIPW

score in Online Appendix C (see Knaus et al., 2021, for a detailed discussion).

We can estimate the AIPW score as follows. First, we estimate the nuisance param-

eters. In this step, we obtain the estimated conditional expectations of the potential

donations with and without the gift by µ̂1(z) and µ̂−1(z) and the estimated propensity

score by p̂(z). Second, we plug the estimated nuisance parameters into the estimator of

the AIPW score,

Γ̂i = Γ̂i(1)− Γ̂i(−1),

with

Γ̂i(1) = µ̂1(Zi) +
1+ Di

2
·

Yi − µ̂1(Zi)
p̂(Zi)

,

and

Γ̂i(−1) = µ̂−1(Zi)−
Di − 1

2
·

Yi − µ̂−1(Zi)
1− p̂(Zi)

.

The corresponding average-treatment-effect estimator

δ̂ =
1
N

N
∑

i=1

Γ̂i (3)

is consistent, asymptotically normal, and semiparametrically efficient under the require-

ment that the nuisance parameter estimators are consistent and converge sufficiently

fast (e.g., Chernozhukov et al., 2017; Robins et al., 1994). In our application, we have

precise information about the stratification process. Therefore, we use parametric nui-

sance parameter estimators which satisfy the requirements. In particular, we use a Logit

to estimate the propensity score and OLS to estimate the conditional expectations of the

potential donations with and without the gift (Table D.1 in Online Appendix D reports the

estimated coefficients of the different models). As for the CATE estimator, Semenova and

Chernozhukov (2020), Fan et al. (2019), and Zimmert and Lechner (2019) show that

the AIPW scores can also be used to estimate the CATEs, δ̂(x). This requires additional

restrictions on the parameter space of X i (see, e.g., Knaus, 2020, for a comprehensive

review).

Note that we could alternatively estimate the ATEs and CATEs with a multivariate

OLS regression model. To obtain the CATEs, we would have to interact the treatment

dummy, Di, with the characteristics, X i. However, in contrast to multivariate OLS, the

AIPW does not impose any restrictions on the (variable-specific) effect heterogeneity,

which is particularly relevant for the targeting approach. Having said this, we show in

Section 5 that the OLS and AIPW estimates of the ATEs are similar.

and without the gift under the SUTVA and the experimental design.
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Estimating the optimal targeting rule. For the estimation of the optimal targeting

rule, Athey and Wager (2021) propose replacing the unobservable individual causal ef-

fect, δi, in (2) with the estimated AIPW score, Γ̂i:

π∗ = argmaxπ

¨

1
2N

N
∑

i=1

π(X i)(Γ̂i − c)

«

. (4)

Alternatively, the objective function (4) can be formulated as the weighted classification

estimator

π∗ = argmaxπ

¨

1
2N

N
∑

i=1

π(X i) · sign(Γ̂i − c) · |Γ̂i − c|

«

, (5)

where (Γ̂i−c) = sign(Γ̂i−c)·|Γ̂i−c| (see, e.g., Beygelzimer and Langford, 2009; Zadrozny,

2003; Zhao et al., 2012). This estimator aims to classify the sign of the net donation ef-

fects and weigh each observation by |Γ̂i − c|. The objective function is maximized when

the signs of π(X i) and (Γ̂i−c) are equal. If some signs differ, misclassifications of individ-

uals who respond strongly (i.e., individuals with large weights) reduce the net donations

more than misclassification of individuals who do not respond strongly to the gift (i.e.,

individuals with small weights). Accordingly, the optimal targeting estimator should

prioritize individuals with large weights. Because the estimated optimal targeting rule

is a deterministic function of the observable characteristics X i, there is an implicit con-

nection between optimal targeting and the CATEs, even though we estimate the optimal

targeting rule directly (without estimating the CATEs first).20

The main result of Athey and Wager (2021) that enables estimation of (5) is that,

when the complexity of the estimator is restricted, the optimal targeting rule π∗ achieves

asymptotically minimax-optimal regret (Manski, 2004). Along these lines, in principle,

any restricted weighted classification estimator could be used to estimate (5). We, how-

ever, follow Athey and Wager (2021) and use shallow decision trees to estimate the

optimal rule. Trees partition the sample into mutually exclusive strata based on the het-

erogeneity characteristics, X i. Furthermore, the tree depth restricts the complexity of the

estimated optimal targeting rule, which makes trees suitable estimators in our context.

In our main specifications, we follow Zhou et al. (2018) and use Exact Policy-Learning

Trees, with a search depth of two, to estimate the optimal targeting rule.21

Advantages of decision trees. It is possible to use standard estimators, such as a

weighted Logit regression, to estimate (5). However, decision trees have several ad-

20Furthermore, the CATEs do not account for the gift’s costs.
21For implementation, we use the R package policytree (Sverdrup et al., 2020). Alternatively, we

could have used classification and regression trees (CARTs). CARTs select the partition with a greedy
algorithm by adding recursive sample splits to the tree without anticipating later splits (e.g., Breiman et al.,
1984). In contrast, Exact Policy-Learning Trees search for a fixed tree depth over all possible targeting
rules. In contrast to CARTs, Exact Policy-Learning Trees estimate the global optimum of (5).
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vantages compared to Logit regressions for the estimation of optimal targeting rules.

They select the relevant heterogeneity characteristics in a data-driven way. This feature

is particularly useful when we have no a priori domain knowledge about the relevant

characteristics. Even if we know the relevant characteristics, there might be several

highly correlated measures of these characteristics, and it may be a priori unclear which

are the most relevant. For example, in our application, several geospatial characteristics

are highly correlated, and there is little a priori guidance on which should be used. In the

extreme case, including too many highly correlated characteristics in a Logit regression

could cause multicollinearity problems. Furthermore, it is typically unclear how flexible

the empirical model should be with regard to nonlinear and interaction terms. Trees

can automatically incorporate nonlinear and interaction terms of the different charac-

teristics without precoding. This feature minimizes the risk of overlooking important

heterogeneities. Having said this, we study the sensitivity of our results to different es-

timation methods for the targeting rule in Section 5.6. In particular, we consider Logit,

Logit Lasso, CART, and classification-forest estimators.

Estimating the gains of targeting. Once we have estimated the optimal targeting rule,

π∗, we can apply the sample analogy principle to estimate the gains of targeting relative

to the benchmarks:

P̂(π∗(X i)) =
1
N

N
∑

i=1

�

Γ̂i(π
∗(X i))−

1+π∗(X i)
2

c
�

,

Q̂1(π
∗(X i)) =

1
N

N
∑

i=1

π∗(X i)− 1
2

�

Γ̂i − c
�

,

Q̂−1(π
∗(X i)) =

1
N

N
∑

i=1

1+π∗(X i)
2

�

Γ̂i − c
�

, and

Q̂R(π
∗(X i)) =

1
2N

N
∑

i=1

π∗(X i)
�

Γ̂i − c
�

.

These estimators are consistent, asymptotically normal, and semiparametrically efficient

(see, Chernozhukov et al., 2018a).

We estimate the gains of targeting using a cross-fitting procedure. Our procedure ran-

domly partitions our data into K = 20 equally sized samples. We then use K−1 partitions

to estimate the targeting rule π∗ and calculate P̂(π∗(X i)), Q̂1(π∗(X i)), Q̂−1(π∗(X i)), and

Q̂R(π∗(X i)) in the retained partition. We repeat this procedure, discarding each of the

K partitions once. In this way, we use the entire dataset efficiently. Finally, we report

the average values of P̂(π∗(X i)), Q̂1(π∗(X i)), Q̂−1(π∗(X i)), and Q̂R(π∗(X i)) over all 20

partitions. The cross-fitting approach allows us to assess the estimated targeting rules’

out-of-sample performance. It also addresses the concern that the targeting rule reflects

spurious relationships and overstates the success of targeting due to overfitting.
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Table 2: Average treatment effects of the gift on donations

Warm list Cold list
OLS OLS AIPW OLS OLS AIPW
(1) (2) (3) (4) (5) (6)

A. Average treatment effects 1.24 1.21 1.22 0.19*** 0.19*** 0.19*
(1.25) (1.16) (1.15) (0.07) (0.07) (0.10)

B. Average treatment effects 0.08 0.05 0.06 -0.97*** -0.97*** -0.97***
net of costs (1.25) (1.16) (1.15) (0.07) (0.07) (0.10)

Strata controls No Yes Yes No Yes Yes

Notes: This table shows the estimated ATEs of the gift treatment on donations. The first set of estimates
uses the amount donated in the first year after the gift as an outcome variable (euro). The second set of
estimates additionally subtracts the gift’s cost from the donation amount. We report results for the fol-
lowing specifications: unconditional OLS (Columns 1 and 4), OLS with strata control variables (Columns
2 and 5), and AIPW (Columns 3 and 6). Because the AIPW model allows for heterogeneous treatment
effects, this model represents our preferred specification. Standard errors are in parenthesis. ***/**/*
indicate statistical significance at the 1%/5%/10% level.

5 Results
This section presents our results. Subsection 5.1 discusses the ATEs of the gift on dona-

tions, and Subsection 5.2 explores the heterogeneity of the effects. The section proceeds

by discussing the effectiveness of our optimal targeting approach in Subsection 5.3 be-

fore describing several properties of the estimated optimal targeting rule in Subsection

5.4. Finally, Subsection 5.5 outlines which characteristics are sufficient to increase prof-

its significantly through machine-learning-based optimal targeting, and Subsection 5.6

explores the robustness of our results to alternative estimators.

5.1 Average Effects of Gifts on Donations

To facilitate comparison to the literature studying the effects of unconditional gifts on

donations, our first step is to estimate the ATE of the gift on donations. Table 2 reports

three different estimates, focusing on behavior in the first year after the experiment:

estimates from unconditional OLS regressions (Columns 1 and 4), estimates from condi-

tional OLS regressions (Columns 2 and 5), and estimates from the previously introduced

AIPW estimator (Columns 3 and 6).22 Columns 1–3 cover the warm list and Columns

4–6 the cold list.

Average treatment effects for the warm list. Two observations characterize the re-

sponses in the warm list. First, the gift increased average donations by 1.21–1.24 euro,

though the effects are not statistically significant (see Row A in Table 2).23 Notably, these

22In contrast to the OLS regressions, the AIPW estimator relies on fewer functional-form assumptions,
allows for heterogeneous treatment effects, and is more robust to misspecification.

23This result is in line with Landry et al. (2010), who also report insignificant effects for the warm list.
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estimates do not account for the cost of the gift (which were 1.16 euro). Second, when

accounting for the costs, we find small and insignificant net-of-cost effects between 0.05

euro and 0.08 euro, depending on the chosen estimator (see Row B in Table 2). The

small values imply that we neither find evidence for the hypothesis that the gift treat-

ment was, on average, profitable (i.e., increased average donations by more than the

costs) nor that it resulted in a net loss for the fundraiser. The two observations are in-

sightful from a targeting perspective. To see why, note that we can think of the treatment

effects as driven by a change from the benchmark targeting rule where no one receives

the gift (control group) to the one where everybody receives the gift (treatment group).24

Along these lines, the insignificant net-of-cost effects speak against the hypothesis that

the all-gift benchmark outperforms the no-gift benchmark in terms of available funds.

Average treatment effects for the cold list. Very different results emerge for the cold

list. The ATEs are significant (note the larger sample size), but much smaller, and amount

to just 0.19 euro (Row A). As a result, when accounting for costs, the all-gift benchmark

rule would result in a significant loss of 0.97 euro per donor, compared to the no-gift

benchmark rule (Row B). Accordingly, considering only these two benchmark rules, we

find that the more profitable strategy is to send the gift to no one in the cold list.25 Taken

together, we conclude that naive targeting of gifts to all individuals in the warm and cold

list does not increase our fundraiser’s net donations. Such a strategy would even likely

result in a net loss as there are many more cold-list than warm-list individuals. Based on

these insights, one might be tempted to conclude that our fundraiser can never increase

net donations with the gift. In the following, we, instead, show that a more targeted gift

campaign can be very successful.

5.2 Heterogeneous Treatment Effects

This subsection provides a descriptive analysis suggesting that the charity can likely in-

crease raised net donations by deviating from the no-gift and all-gift benchmarks. For

that purpose, we explore effect heterogeneity. To motivate the analysis, note that in the

absence of heterogeneous treatment effects, the charity cannot benefit from targeting

rules that are more flexible than the benchmarks. Intuitively, as all individuals respond

similarly to the gift, the optimal targeting rule would either correspond to the no-gift or

all-gift benchmark. However, with effect heterogeneity, some individuals may increase

their donations by more and others by less than the gift’s cost. If this is the case, the

charity’s optimal strategy would be to deviate from the benchmarks and target a subset

of individuals only.

24More formally, the expected difference in net donations between the benchmark rules π1 and π−1 is
P(π1)− P(π−1) = E[δi]− c.

25The previous literature has reported similar results in the past. For example, Alpizar et al. (2008)
show that gifts increase donations, but the increase is insufficient to cover the gift’s costs.
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Estimating effect heterogeneity. We use the CATE-based sorted-effects approach of

Chernozhukov et al. (2018b) to study effect heterogeneity. This method allows us to vi-

sualize the distribution of the effects of the gift on donations while reporting confidence

intervals that account for multiple testing. Particularly, we specify a linear OLS regres-

sion including all observable characteristics plus interactions with the treatment dummy.

Using this model, we estimate the CATE for each individual and report the percentiles

of the estimated CATEs (labeled sorted effects).26 We then examine if the sorted-effects

model shows heterogeneous effects below and above the gift’s costs to investigate if de-

viations from the two benchmarks are likely beneficial. Note, however, that we only use

the sorted-effects approach to assess the potential of optimal targeting descriptively (i.e.,

we do not use it to identify targets). Instead, we estimate the optimal targets using a

machine-learning approach explicitly developed for this purpose.

Heterogeneity in the warm list. Panel (a) in Figure 2 depicts the heterogeneity of

the treatment effect on the donation amount for the warm list (solid line). It sorts the

estimated CATEs by size and plots the size of the treatment effect in euro (vertical axis)

against the percentiles of the effect size (horizontal axis). The red horizontal line repre-

sents the cost of the gift (1.16 euro).

The figure reveals substantial treatment-effect heterogeneity.27 For some individu-

als, the treatment effects are positive, which is in line with the sequential-reciprocity

hypothesis (Dufwenberg and Kirchsteiger, 2004; Falk, 2007). For example, the 5% most

responsive individuals increase donations by more than 20.62 euro in response to the

gift. By contrast, at the fifth percentile, donations decrease by 14.76 euro. Such an ad-

verse effect points to the possibility that even a “warm” gift (folded cards) may change

the donors’ perception of the relationship with the fundraiser from a communal to an

exchange norm (Yin et al., 2020). The pronounced heterogeneity is interesting for at

least two reasons. First, and most importantly, the heterogeneity indicates that machine-

learning-based optimal targeting can be highly beneficial in the warm list: For only 62%

of all individuals, the estimated effects exceed the cost of providing the gift. Thus, by

targeting these individuals and not targeting donors with effects lower than the cost, the

charity could substantially increase net donations. Second, the figure also reveals that

the individual heterogeneity alone is powerful enough to account for the negative and

positive effects reported in the literature.

26Statistical inference is based on a multiplier bootstrap (see Chernozhukov et al., 2018b, for details).
27One might be interested in whether the size of the treatment effects correlates with observable char-

acteristics. Tables E.1 and E.2 in Online Appendix E report the mean values of all characteristics for the
groups with the 10% largest and the 10% smallest sorted effects. In the warm list, the individuals with
the 10% largest effects tend to have donated less before the experiment and to live at a lower altitude
than individuals with the 10% smallest effects, although the effects are insignificant. In the cold list, the
individuals with the 10% largest effects tend to live significantly closer to the city center than individuals
with the 10% smallest effects.
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Figure 2: Sorted effects

(a) Warm list (b) Cold list

Notes: This figure shows the heterogeneity of the effect of the gift on the donation amount. To that end,
it sorts the estimated conditional average treatment effects by size and plots the size of the treatment
effect in euro (vertical axis) against the percentiles of the effect size (horizontal axis). The red horizontal
line represents the cost of the gift (1.16 euro). The solid line depicts the sorted effects. We report results
between the 5 and 95 percentiles. The dashed lines report uniformly valid 95% confidence intervals,
which build on a multiplier bootstrap and 500 replications.

Heterogeneity in the cold list. Panel (b) in Figure 2 highlights that the effect hetero-

geneity in the cold list is much smaller than in the warm list. For example, the donation

amount decreases by 0.75 euro at the fifth percentile and increases by 1.39 euro at the

95 percentile. Moreover, we find that the gift-induced increase in donations exceeds

the costs only for individuals above the 92 percentile in the cold list, and even for these

individuals the size of the treatment effects is relatively small. We conclude that the

potential to increase net donations by subgroup-specific targeting is much lower in the

cold list than in the warm list.

5.3 Effectiveness of Machine-Learning-Based Optimal Targeting

This subsection evaluates if machine-learning-based optimal targeting allows us to ex-

ploit the documented response heterogeneity to increase net donations in the first year

after the experiment. We first estimate optimal targeting rules (Athey and Wager, 2021).

We then evaluate the effectiveness of the estimated rules in raising net donations by com-

paring their out-of-sample performance to several benchmarks. For that purpose, we use

the cross-fitting approach described in Section 4.

The estimated optimal targeting rule in the warm list. Table 3 focuses on the warm

list and documents how the estimated optimal targeting rule performs out of sample
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Table 3: Out-of-sample performance of targeting rule in the warm list

Expected outcome value Optimal targeting vs. benchmarks
under optimal targeting all-gift no-gift random-gift

(1) (2) (3) (4)

Panel A: Share of individuals that should receive the gift

A1. Share treated 0.33

Panel B: Results for primary outcome variable

B1. Net donation amount 17.61*** 2.14*** 2.20*** 2.17***
(1st year) (0.97) (0.82) (0.81) (0.58)

Panel C: Results for secondary outcome variables

C1. Donation probability 0.503*** 0.007 0.025** 0.016*
(1st year) (0.013) (0.013) (0.010) (0.008)

C2. Net donation amount 32.94*** 2.33* 3.75*** 3.04***
(1st and 2nd year) (1.66) (1.41) (1.41) (0.10)

C3. Donation probability 0.582*** 0.001 0.017* 0.009
(1st and 2nd year) (0.013) (0.013) (0.009) (0.008)

Notes: This table documents the out-of-sample performance of our estimated optimal targeting rule,
focusing on the warm list. The goal of optimal targeting is to maximize donations, net of costs. Panel
A reports the share of individuals that, according to the rule, should receive the gift. Panel B reports
the expected consequences of our rule for net donations as our main outcome. Panel C, instead, focuses
on secondary outcomes. The columns can be interpreted as follows. Column 1 reports the expected
value of the outcomes under optimal targeting. For example, we expect that, under optimal targeting,
the donations, net of costs, would be 17.61 euro. Columns 2–4 show how optimal targeting changes the
outcomes relative to three benchmark scenarios: everybody receives the gift (Column 2), no one receives
the gift (Column 3), and the gift is randomly assigned to half of the sample (Column 4). Methodologically,
the optimal targeting rules are estimated with Exact Policy-Learning Trees and a search depth of two (Zhou
et al., 2018). Donations are measured in euro. Standard errors are in parentheses. ***/**/* indicate
statistical significance at the 1%/5%/10% level.

relative to the benchmarks. The table provides three sets of insights. First, Panel A

reports that the estimated targeting rule recommends deviating from the no-gift and

all-gift benchmarks. Specifically, it assigns the gift to 33% of the warm-list individuals

(Column 1). This percentage is reasonably close to the percentage of individuals with a

sorted effect that exceeds the gift’s costs (see Figure 2).

Second, Panel B documents that, compared to our benchmarks, the charity would

benefit substantially from applying the estimated optimal targeting rule. In the first year

after the experiment, the average net donation under the estimated optimal targeting

rule is 17.61 euro (Column 2). This value implies that, under the estimated optimal

targeting rule, the average donation, net of costs, is 2.14 euro (13.8%) higher than

if everybody received the gift (Column 3), 2.20 euro (14.3%) higher than if no one

received the gift (Column 4), and 2.17 euro (14.1%) higher than if the gift was randomly

allocated to one half of the warm-list sample (Column 5). Accordingly, the estimated
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optimal targeting rule is significantly more profitable than all three benchmark policies.

In conclusion, our techniques allow the fundraiser to increase net donations significantly

and, hence, service and goods provision.

Third, Panel C documents that, by applying the estimated optimal targeting rule, the

fundraiser would also impact outcomes besides net donations (labeled secondary out-

comes). Thus, although we train our algorithm to maximize net donations, implement-

ing the estimated rule would trigger secondary effects as a byproduct. One secondary

outcome is the donation probability within the first postexperiment year (see Row C1).

Specifically, by implementing the estimated optimal rule, the fundraiser would increase

this probability by almost three percentage points (5%) compared to the no-gift bench-

mark. Our proposed targeting strategy, hence, not only maximizes net donations, but

also broadens the donor base compared to a scenario without gifts. In contrast to this

result, the donation probability under the estimated rule is not significantly higher than

under the all-gift benchmark. Hence, although this benchmark endows many more in-

dividuals with the gift, it does not fundamentally increase the donation probability. This

result suggests that intensive margin responses drive the difference in net donations

between the benchmark and the estimated rule. Besides impacts on the donation prob-

ability, the table also reveals secondary effects on longer-term outcomes. For example,

Row C2 of Table 3 demonstrates that, when using the outcome “aggregate donations

made within two years after the experiment,” the positive effects of applying the esti-

mated optimal targeting rule persists. This is an important result from the fundraiser’s

perspective: It highlights that the machine-learning-induced increase in net donations

would not curb subsequent donations.

The estimated optimal targeting rule in the cold list. Table 4 shows the out-of-

sample performance of the estimated optimal targeting rule in the cold list. Due to

the substantial size of the cold-list sample (17,000 individuals), all of the effects are

very precisely estimated. Again, the results are very different from those for the warm

list. One marked difference is that the estimated target group is much narrower in the

cold list (Panel A): In line with the evidence from the sorted-effects model, the estimated

optimal rule assigns the gift to just 1.4% of the cold-list individuals. Given this finding,

it is not surprising that the average net donation under the estimated optimal rule (0.15

euro) is virtually identical to that under the no-gift benchmark (Column 3 in Panel B).

By contrast, the estimated optimal targeting rule outperforms the all-gift (Column 2 in

Panel B) and random-gift benchmarks (Column 4 in Panel B). The reason is that cam-

paigns that apply these two benchmarks would result in losses. Table 4 also presents

evidence on secondary effects (Panel C). Again, we find no evidence for pull-forward

or delay effects. Further, there are only minimal impacts on the donation probability.

To sum up, the potential of machine-learning-based optimal targeting in the cold list is
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Table 4: Out-of-sample performance of targeting rule in the cold list

Expected outcome value Optimal targeting vs. benchmarks
under optimal targeting all-gift no-gift random-gift

(1) (2) (3) (4)

Panel A: Share of individuals that should receive the gift

A1. Share treated 0.014

Panel B: Results for primary outcome variable

B1. Net donation amount 0.15*** 0.97*** -0.005 0.48***
(1st year) (0.02) (0.10) (0.012) (0.05)

Panel C: Results for secondary outcome variables

C1. Donation probability 0.009*** -0.007*** 0.001 -0.003**
(1st year) (0.001) (0.003) (0.001) (0.001)

C2. Net donation amount 0.44*** 0.96*** 0.04 0.50***
(1st and 2nd year) (0.07) (0.13) (0.06) (0.07)

C3. Donation probability 0.017*** -0.006* 0.001 -0.003
(1st and 2nd year) (0.001) (0.003) (0.001) (0.002)

Notes: This table documents the out-of-sample performance of our estimated optimal targeting rule,
focusing on the cold list. The goal of optimal targeting is to maximize donations, net of costs. Panel
A reports the share of individuals that, according to the rule, should receive the gift. Panel B reports
the expected consequences of our rule for net donations as our main outcome. Panel C, instead, focuses
on secondary outcomes. The columns can be interpreted as follows. Column 1 reports the expected
value of the outcomes under optimal targeting. For example, we expect that, under optimal targeting,
the donations, net of costs, would be 0.15 euro. Columns 2–4 show how optimal targeting changes the
outcomes relative to three benchmark scenarios: everybody receives the gift (Column 2), no one receives
the gift (Column 3), and the gift is randomly assigned to half of the sample (Column 4). Methodologically,
the optimal targeting rules are estimated with Exact Policy-Learning Trees and a search depth of two (Zhou
et al., 2018). Donations are measured in euro. Standard errors are in parentheses. ***/**/* indicate
statistical significance at the 1%/5%/10% level.

very limited, perhaps because the cold list consists of many notorious nondonors. This

insight was not clear a priori and could only be established with a flexible, data-driven

approach such as ours.

5.4 Characteristics of Predicted Net Donors and Net Receivers

A common theme in the fundraising literature is understanding the characteristics of

individuals who give to charitable causes (Andreoni and Payne, 2013). Our machine-

learning approach allows us to extend this literature by performing a broader descriptive

analysis: Instead of merely describing the characteristics of givers, we can differentiate

between the predicted net donors and predicted net recipients (i.e., individuals who

increase donation by less than the gift’s cost). The analysis, hence, reveals the charac-

teristics of the individuals who, according to our estimated targeting rule, should receive
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the gift and contrasts them with the characteristics of those who should not be targeted.

Table 5: Characteristics of individuals in the warm list

Individuals targeted by the algorithm
Yes (net donors) No (net receivers) Std.
Mean Std. dev. Mean Std. dev. diff.
(1) (2) (3) (4) (5)

Panel A: Donation history before the experiment

A1. Num. donations prev. 8 years 4.097 2.827 3.900 2.829 6.934
A2. Max. donation prev. 8 years (euro) 39.94 44.61 34.05 41.89 13.63
A3. Total donations prev. 8 years (euro) 130.98 150.69 123.39 187.39 4.460
A4. Donations 1 year ago (euro) 22.69 36.49 19.53 34.60 8.891
A5. Donations 2 years ago (euro) 17.91 30.30 16.89 28.77 3.466
A6. Donations 3 years ago (euro) 16.61 27.49 15.62 27.52 3.593
A7. Donations 4 years ago (euro) 16.71 28.33 15.37 27.21 4.813
A8. Donations 5 years ago (euro) 15.69 24.48 15.03 29.96 2.410

Panel B: Geospatial information

B1. Elevation (meters) 308.66 6.266 321.38 9.524 157.80
B2. In 300 meters proximity:

Number of restaurants 10.86 13.30 6.528 7.711 39.88
Number of supermarkets 1.062 1.371 1.086 1.362 1.748
Number of medical facilities 10.17 13.95 9.298 12.041 6.703
Number of cultural facilities 0.240 0.796 0.050 0.241 32.27
Number of churches 1.166 1.515 0.934 1.460 15.60

B3. Distance to main station (km) 3.247 2.521 3.245 1.867 0.053
B4. Distance to city hall (km) 2.927 2.237 3.196 1.856 13.11
B5. Distance to main church (km) 2.986 2.365 3.218 1.836 10.99
B6. Distance to airport (km) 5.427 1.236 5.483 1.960 3.408
B7. Travel time to main station (minutes) 18.42 11.79 17.50 7.560 9.371

Panel C: Socioeconomic characteristics

C1. Female dummy 0.507 0.539 6.459
C2. Single dummy 0.503 0.496 1.464
C3. Widowed dummy 0.050 0.052 0.974
C4. Age (years) 68.08 18.23 68.72 18.34 3.488
C5. Residency duration (years) 7.423 1.690 7.439 1.659 0.951

Observations 787 15,67

Notes: This table describes characteristics of the warm-list individuals who, according to our estimated
optimal targeting rule, should receive a gift (predicted net donors) or should not receive a gift (predicted
net recipients). Particularly, it reports the means and standard deviations of all observed characteristics for
the predicted net donors (Columns 1–2) and the predicted net recipients (Columns 3–4). It also shows the
standardized difference (Column 5). The residency duration in the urban area is censored after 8 years.
Further, we measure travel time to the main station using public transportation at 9 : 00am on weekdays.
For dummy variables, the first moment is sufficient to infer the entire distribution. Rosenbaum and Rubin
(1983) classify absolute standardized differences (std. diff.) of more than 20 as large.

Characteristics of predicted net donors and net receivers in the warm list. Ta-

ble 5 focuses on the warm list. It reports the means and standard deviations of all

25



observed characteristics for predicted net donors (Columns 1–2) and predicted net re-

ceivers (Columns 3–4). It also shows the standardized difference, a standard balance

diagnostic (Column 5). The table highlights some apparent differences between the two

groups. For example, before the experiment, the predicted net donors donated on aver-

age more and also more frequently than the predicted net recipients (Panel A). They also

live in more central areas that are characterized by (a) lower altitudes and (b) a more

lively environment with more churches, restaurants, and cultural facilities (Panel B).28

By contrast, the differences in socioeconomic characteristics are not very pronounced. If

anything, predicted net donors are more frequently female (Panel C). When interpreting

these results, keep in mind that the characteristics are not necessarily reflecting chan-

nels through which the impacts of the gift operate. The patterns might instead mirror

effects working through correlated unobservable variables. For example, the donation

history may approximate individuals’ general willingness to give, and geospatial infor-

mation could proxy income. In this vein, these and similar unobservable variables might

channel the responses to the gift. We consider it a strength of our approach that the

machine-learning algorithm can pick up the underlying forces that shape individuals’ re-

actions to the gift without the need to collect data or explicitly model the relationships.

Characteristics of predicted net donors and net receivers in the cold list. Table

6 reports similar results for the cold list. The predicted net donors from the cold list

also live in more central areas than the respective predicted net recipients, but the areas

now tend to be less lively. Regarding the socioeconomic characteristics, there are more

pronounced differences compared to the warm list. Relative to predicted net recipients,

predicted net donors tend to have a higher likelihood of being females, singles, and

newly settled residents.

Decision trees. A second, natural way to describe the estimated targeting rule is to

plot decision trees. However, because we use a cross-fitting approach to evaluate the

estimated rule’s out-of-sample performance, we estimate 20 different trees. Considering

one single tree is, hence, not very informative. Furthermore, the trees do not identify

the causal effect of the donor characteristics on the net donations. Rather, they indicate

correlations between donor characteristics and the gift’s causal effect. For these reasons,

we neither present nor causally interpret single trees in the main body of the paper; we

do provide example trees in Appendix F (Figure F.1).29

28In the urban area we study, the topology correlates with distance to the city center. Concretely, indi-
viduals living in lower altitudes live on average closer to the city hall and the main church.

29The tree splits are based on the previous donation amount and the elevation at the home address in
the warm list. In the cold list, the tree splits are based on the number of restaurants near the residence
and the distance to the city hall and airport. The trees do not use socioeconomic characteristics.
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Table 6: Characteristics of individuals targeted by the algorithm in the cold list

Individuals targeted by the algorithm
Yes (net donors) No (net receivers) Std.
Mean Std. dev. Mean Std. dev. diff.
(1) (2) (3) (4) (5)

Panel A: Geospatial information

A1. Elevation (meters) 313.47 8.183 316.15 10.34 28.71
A2. In 300 meters proximity:

Number of restaurants 5.482 3.524 10.40 11.67 57.08
Number of supermarkets 0.888 1.122 1.296 1.502 30.77
Number of medical facilities 13.73 10.20 10.68 13.17 25.89
Number of cultural facilities 0.040 0.196 0.146 0.532 26.43
Number of churches 1.100 1.017 1.177 1.538 5.957

A3. Distance to main station (km) 1.995 0.890 2.874 2.028 56.14
A4. Distance to city hall (km) 1.364 0.645 2.816 1.885 103.02
A5. Distance to main church (km) 1.588 0.743 2.803 1.932 83.03
A6. Distance to airport (km) 4.143 1.038 5.567 1.642 103.68
A7. Travel time to main station (minutes) 12.50 6.312 16.18 8.680 48.45

Panel B: Socioeconomic characteristics

B1. Female dummy 0.558 0.503 11.04
B2. Single dummy 0.713 0.642 15.24
B3. Widowed dummy 0.024 0.017 4.518
B4. Age (years) 47.58 21.00 48.41 19.30 4.132
B5. Residency duration (years) 5.677 2.964 5.973 2.818 10.22

Observations 251 17,174

Notes: This table describes characteristics of the cold-list individuals who, according to our estimated
optimal targeting rule, should receive a gift (predicted net donors) or should not receive a gift (predicted
net recipients). Particularly, it reports the means and standard deviations of all observed characteristics for
the predicted net donors (Columns 1–2) and the predicted net recipients (Columns 3–4). It also shows the
standardized difference (Column 5). The residency duration in the urban area is censored after 8 years.
Further, we measure travel time to the main station using public transportation at 9 : 00am on weekdays.
For dummy variables, the first moment is sufficient to infer the entire distribution. Rosenbaum and Rubin
(1983) classify absolute standardized differences (std. diff.) of more than 20 as large.

5.5 Relevant Type of Data for Optimal Targeting

As discussed before, we estimate the optimal targeting rule using socioeconomic char-

acteristics, donation history, and geospatial information. The next step of our analysis

explores which of these data are especially powerful to estimate targeting rules. It also

investigates if our algorithms require all the data to estimate effective optimal targeting

rules. Besides being interesting in itself, studying this topic is vital for charities. Data

collection is costly, and, frequently, some forms of data (such as socioeconomic charac-

teristics) are unavailable. In many settings, a charity might only have access to address

data before sending out written solicitations. Hence, from a charity’s perspective, the

usefulness and feasibility of machine-learning-based optimal targeting critically depend

27



on the data required to target net donors effectively.

Table 7: Relevant data types in the warm list

Share Expected donations Optimal targeting vs.
treated under optimal targeting all-gift no-gift random-gift all variables

(1) (2) (3) (4) (5) (6)

Panel A: Socioeconomic characteristics

0.55 15.71*** 0.24 0.29 0.27 -1.91**
(0.79) (0.86) (0.77) (0.58) (0.89)

Panel B: Donation history before the experiment

0.12 17.20*** 1.73** 1.79** 1.76*** -0.41
(0.97) (0.82) (0.81) (0.58) (0.55)

Panel C: Geospatial information

0.49 17.40*** 1.93** 1.98** 1.95*** -0.22
(0.91) (0.84) (0.79) (0.58) (0.61)

Panel D: Socioeconomic characteristics and donation history

0.11 17.05*** 1.58* 1.64** 1.61*** -0.56
(0.96) (0.84) (0.79) (0.58) (0.56)

Panel E: Socioeconomic characteristics and geospatial information

0.48 16.97*** 1.50* 1.55* 1.53*** -0.64
(0.89) (0.84) (0.80) (0.58) (0.62)

Panel F: Donation history and geospatial information

0.33 17.61*** 2.14*** 2.20*** 2.17*** 0
(0.97) (0.82) (0.81) (0.58)

Notes: This table documents the out-of-sample performance of targeting rules that rely only on selected
subsets of our variables, focusing on the warm list. The rule in Panel A is based only on socioeconomic
characteristics, in Panel B on the donation history, in Panel C on geospatial information, in Panel D on
socioeconomic characteristics and the donation history, in Panel E on socioeconomic characteristics and
geospatial information, and in Panel F on the donation history and geospatial information. Column 1
reports the share of individuals who, according to the respective rule, should receive the gift. Column 2
reports expected donations under optimal targeting. Columns 3–5 show how optimal targeting changes
the outcomes relative to three benchmark scenarios: the all-gift (Column 3), no-gift (Column 4), and
random-gift (Column 5) benchmarks. Column 6 compares the rule that only uses the subset of variables
to the rule that relies on the full set of data. Methodologically, the rules are estimated with an Exact
Policy-Learning Trees and a search depth of two (Zhou et al., 2018). Donations are measured in euro.
Standard errors are in parentheses. ***/**/* indicate statistical significance at the 1%/5%/10% level.

Relevant data in the warm list. Table 7 focuses on the warm list and explores the rel-

evance of the different data types for the performance of the estimated optimal targeting

rule. For this purpose, it evaluates the performance of several estimated targeting rules,
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each using only a subset of the available data. As before, the table benchmarks these

more sparsely estimated rules against the all-gift (Column 3), no-gift (Column 4), and

random-gift (Column 5) benchmarks. Additionally, Column 6 compares these newly

estimated rules to the estimated optimal (baseline) rule obtained when using all data

(reported in Table 3).

The results are as follows: First, our baseline rule clearly outperforms a rule that

relies only on socioeconomic characteristics. Also, the rule based only on socioeconomic

characteristics does not outperform the three benchmarks (Panel A). As socioeconomic

data are often hard to obtain, these results might not be problematic for charities. Sec-

ond, our baseline rule does not significantly dominate rules that either use only data on

past donations (Panel B) or use only geospatial information (Panel C). Similar to our

baseline rule, these two more sparsely estimated rules also significantly outperform the

three benchmarks. These findings suggest that the data on past donations and geospatial

information are substitutes in targeting. Hence, charities that do not have access to de-

tails on individuals’ donation histories might instead rely on publicly available geospatial

data only. Third, Panels D–F further emphasize that the socioeconomic characteristics

are of very limited use for machine-learning-based optimal targeting. Adding them does

not improve the rules that rely solely on the donation history (Panels B and D) or geospa-

tial information (Panels C and F). Furthermore, a rule that combines the donation history

with the geospatial information performs as well as a rule that uses all the data. The

reason is that our baseline rule is not relying on the socioeconomic characteristics at all.

Relevant data in the cold list. Table 8 reports similar analyses for the cold list. To that

end, it restricts the data either to socioeconomic characteristics or geospatial informa-

tion. It turns out that the socioeconomic characteristics are also redundant in the cold

list: Once again, our baseline targeting rule does not use socioeconomic characteristics.

Thus, the results do not change when using only the geospatial information instead of

all data (see Panel B).

We draw two main conclusions from this subsection. First, in the warm list, the

fundraiser can significantly improve its campaigns’ profits by relying only on widely

available geospatial information. Put differently, the fundraiser does not necessarily

need access to detailed data on past donations, and socioeconomic characteristics seem

to be of little use for optimal targeting. This finding raises the attractiveness of our

approach for charities that, for the sake of simplicity or due to data-collection costs,

prefer to rely on a single data source. Second, in the cold list, the potential benefits of

machine-learning-based optimal targeting are very limited. Given the data available, the

dominant strategy is not to send the gift to individuals in the cold list.
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Table 8: Relevant data types in the cold list

Share Expected donations Optimal targeting vs.
treated under optimal targeting all-gift no-gift random-gift all variables

(1) (2) (3) (4) (5) (6)

Panel A: Socioeconomic characteristics

0.015 0.14*** 0.96*** -0.014** 0.47*** -0.01
(0.02) (0.10) (0.007) (0.05) (0.014)

Panel B: Geospatial information

0.014 0.15*** 0.97*** -0.005 0.48*** 0
(0.02) (0.10) (0.012) (0.05)

Notes: This table documents the out-of-sample performance of targeting rules that rely only on selected
subsets of our variables, focusing on the cold list. The rule in Panel A is based on socioeconomic charac-
teristics only, and in Panel B on geospatial information only. Column 1 reports the share of individuals
who, according to the respective rule, should receive the gift. Column 2 reports the expected donations
under optimal targeting. Columns 3–5 show how optimal targeting changes the outcomes relative to three
benchmark scenarios: the all-gift (Column 3), no-gift (Column 4), and random-gift (Column 5) bench-
marks. Column 6 compares the rule that uses only the subset of variables to the rule that relies on the
full set of data. Methodologically, the rules are estimated with Exact Policy-Learning Trees and a search
depth of two (Zhou et al., 2018). Donations are measured in euro. Standard errors are in parentheses.
***/**/* indicate statistical significance at the 1%/5%/10% level.

5.6 Sensitivity Analysis

Our final step is to investigate the robustness of the estimated optimal targeting rules

to different estimation approaches. First, we consider alternative depths of the Exact

Policy-Learning Tree (one and three).30 Second, we compare the results of the Exact

Policy-Learning Trees to the results of standard CARTs (Breiman et al., 1984). Third,

for the CARTs, we also consider one version in which we use cross-validation to select

the tree depth in a data-driven way.31 Fourth, we employ weighted Logit as a stan-

dard estimator. Fifth, we use two alternative machine-learning estimators: Logit Lasso

(Hastie et al., 2016) and classification forests (Breiman, 2001).32 For the Logit estimator,

we consider two different model specifications. The baseline specification includes all

observed characteristics linearly (24 variables in the warm list and 16 variables in the

cold list). The flexible specification additionally includes squared terms of continuous

variables and first-order interactions between most characteristics (321 variables in the

30For the cold list, Exact Policy-Learning Trees with a depth of three are infeasible due to computational
constraints.

31We use the Gini index for tree splitting and a 10-fold cross-validation procedure to select the optimal
tree depth. In the warm list, the number of terminal leaves varies between four and nine across the 20
different cross-fitted trees, with an average of 4.6. In the cold list, the number of terminal leaves varies
between two and eight across the 20 different cross-fitted trees, with an average of 2.3.

32We build 1,000 trees for the classification forest. We draw a 50% random subsample with replacement
for each tree and randomly select 50% of the baseline characteristics. We use the Gini index for tree
splitting. We restrict the minimum size of the terminal leaf to 50 observations.
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warm list and 149 variables in the cold list). The Logit-Lasso method selects the relevant

characteristics from the flexible model specification.33

Table G.1 in Online Appendix G reports the results of the sensitivity analysis for the

warm list, and Table G.2 focuses on the cold list. In the warm list, our baseline optimal

targeting strategy clearly dominates the alternative specifications: The baseline optimal

targeting rules of all the alternative estimators yield lower net donations than our main

specification. Specifically, the Exact Policy-Learning Tree with depth one and the Logit

with the flexible model specification have the lowest out-of-sample performance. The

CART with the cross-validated tree depth is the only alternative estimator that also sig-

nificantly outperforms the all-gift and no-gift benchmark allocation rules. For the cold

list, the Logit-Lasso specification and the CART with cross-validated tree depth yield 0.01

euro higher net donations than our main specification. However, our main finding that

the fundraiser should not send the gift to cold-list individuals persists.

6 Conclusion
This paper studies machine-learning-based optimal targeting of fundraising instruments

by exploiting data from a natural field experiment. The underlying idea of optimal tar-

geting is that fundraisers can maximize a campaign’s profits by directing a fundraising

instrument to individuals who increase their donations in response to the instrument

by more than its cost. We label those individuals net donors. However, charities do not

observe the set of net donors. We employ a machine-learning algorithm to estimate

the relationship between individual characteristics and the potential donors’ response

to small unconditional gifts. Based on this algorithm, we can predict the subset of net

donors and, hence, estimate machine-learning-based optimal targeting rules.

Our paper’s first key message is that, in the warm list, machine-learning-based op-

timal targeting substantially boosts the charity’s net donations. In our application, net

donations increase by about 14% compared to the all-gift and no-gift benchmarks. No-

tably, the benefits of machine-learning-based optimal targeting even materialize when

relying only on widely available geospatial data. Hence, charities can easily apply the

proposed strategies to raise additional funds, net of costs. The second message is that,

in the cold list, the approach does not raise donations sufficiently to cover the fundrais-

ing instrument’s additional costs. We conclude that the fundraiser should not target

cold-list individuals at all. We also document that the increase in net donations stems

from heterogeneities in donors’ responses to fundraising activities. Previous literature

has suggested that such heterogeneities exist, for example, by providing mixed evidence

on the effectiveness of unconditional gifts on giving (Falk, 2007; Yin et al., 2020; Alpizar

33We specify the penalty λ of the Logit Lasso that minimizes the misclassification error using a 10-fold
cross-validation approach.
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et al., 2008).

In conclusion, our paper demonstrates that machine-learning-based optimal target-

ing can significantly increase the cost effectiveness of fundraising. One particularly note-

worthy benefit of our applied machine-learning toolkit is that it allows charities to target

fundraising efforts agnostically in a wide variety of contexts. Thus, to optimize targeting,

charities do not need to develop a theoretical foundation or make strong assumptions on

the functional relationship between individual characteristics and giving. We are, there-

fore, confident that the proposed approach offers an accessible way forward to improve

the effectiveness of fundraising. We are also looking forward to future, evolving research

applying similar techniques to alternative fundraising instruments and different settings.

It will also be interesting to see how our findings generalize across these alternative tools

and environments.
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A Descriptives and Balance of Observables

Table A.1: Means and standard deviations of observable characteristics

Warm list Cold list
Mean Std. dev. Mean Std. dev.
(1) (2) (3) (4)

Panel A. Socioeconomic characteristics

Female dummy 0.53 0.50
Single dummy 0.50 0.64
Widowed dummy 0.05 0.02
Age (years) 68.51 18.30 48.40 19.32
Residency duration in urban area (years) 7.43 1.67 5.97 2.82

Panel B: Donation history before the experiment

Number of donations previous 8 years 3.97 2.83 0
Max. donations previous 8 years (euro) 36.02 42.90 0
Total donations previous 8 years (euro) 125.9 176.0 0
Donations 1 year ago (euro) 20.59 35.27 0
Donations 2 years ago (euro) 17.23 29.29 0
Donations 3 years ago (euro) 15.95 27.51 0
Donations 4 years ago (euro) 15.82 27.59 0
Donations 5 years ago (euro) 15.25 28.24 0

Panel C: Geospatial information about home address

Elevation (meters) 317.1 10.46 316.1 10.32
In 300 meters proximity:

Number of restaurants 7.98 10.14 10.33 11.61
Number of supermarkets 1.08 1.36 1.29 1.50
Number of medical facilities 9.59 12.72 10.72 13.13
Number of cultural facilities 0.11 0.51 0.14 0.53
Number of churches 1.01 1.48 1.18 1.53

Distance to main station (km) 3.25 2.11 2.86 2.02
Distance to city hall (km) 3.11 2.00 2.79 1.88
Distance to main church (km) 3.14 2.03 2.79 1.93
Distance to airport (km) 5.46 1.75 5.55 1.64
Travel time to main station (minutes) 17.81 9.20 16.13 8.66

Observations 2,354 17,425

Notes: This table describes the characteristics of cold and warm-list individuals. The donation history
in the cold list is zero, because we only measure the donations to the specific fundraiser we cooperate
with. The residency duration in the urban area is censored after 8 years. We measure travel time to the
main station using public transportation at 9 : 00am on weekdays. For dummy variables, the first moment
is sufficient to infer the entire distribution. Rosenbaum and Rubin (1983) classify absolute standardized
difference (std. diff.) of more than 20 as large.
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Table A.2: Balance of observable characteristics in the warm list

Treatment group Control group Std.
Mean Std. dev. Mean Std. dev. diff.
(1) (2) (3) (4) (5)

Panel A: Socioeconomic characteristics

Female dummy 0.53 0.53 1.22
Single dummy 0.50 0.49 2.04
Widowed dummy 0.05 0.06 3.98
Age (years) 68.57 18.31 68.45 18.31 0.69
Residency duration (years) 7.41 1.70 7.46 1.63 3.13

Panel B: Donation history before the experiment

Num. donations prev. 8 years 3.94 2.81 3.99 2.85 1.98
Max. don. prev. 8 years (euro) 36.49 46.63 35.54 38.81 2.22
Total don. prev. 8 years (euro) 126.64 181.52 125.21 170.31 0.82
Donations 1 year ago (euro) 21.19 39.73 19.98 30.13 3.41
Donations 2 years ago (euro) 17.28 29.55 17.18 29.03 0.32
Donations 3 years ago (euro) 16.11 28.13 15.80 26.88 1.13
Donations 4 years ago (euro) 16.30 28.79 15.34 26.34 3.48
Donations 5 years ago (euro) 14.83 28.53 15.67 27.95 2.96

Panel C: Geospatial information about home address

Elevation (meters) 317.4 10.58 316.9 10.35 4.89
In 300 meters proximity:

Number of restaurants 7.86 10.15 8.10 10.14 2.42
Number of supermarkets 1.11 1.37 1.05 1.36 4.83
Number of medical facilities 9.52 12.52 9.66 12.91 1.03
Number of cultural facilities 0.11 0.52 0.11 0.50 0.22
Number of churches 1.03 1.50 1.00 1.46 1.83

Distance to main station (km) 3.24 2.04 3.25 2.18 0.59
Distance to city hall (km) 3.09 1.93 3.12 2.06 1.15
Distance to main church (km) 3.13 1.96 3.15 2.10 0.87
Distance to airport (km) 5.44 1.77 5.49 1.74 2.47
Travel time to main station (minutes) 17.72 8.80 17.90 9.58 1.94

Observations 1,180 1,174

Notes: This table describes the characteristics of the warm-list individuals in the treatment and control
groups. The residency duration in the urban area is censored after 8 years. We measure travel time to the
main station using public transportation at 9 : 00am on weekdays. For dummy variables, the first moment
is sufficient to infer the entire distribution. Rosenbaum and Rubin (1983) classify absolute standardized
difference (std. diff.) of more than 20 as large.
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Table A.3: Balance of observable characteristics in the cold list

Treatment group Control group Std.
Mean Std. dev. Mean Std. dev. diff.
(1) (2) (3) (4) (5)

Panel A: Socioeconomic characteristics

Female dummy 0.50 0.50 0.14
Single dummy 0.64 0.64 0.23
Widowed dummy 0.02 0.02 0.35
Age (years) 48.34 19.25 48.41 19.33 0.34
Residency duration (years) 5.96 2.82 5.97 2.82 0.36

Panel B: Geospatial information about home address

Elevation (meters) 316.2 10.42 316.1 10.31 0.40
In 300 meters proximity:

Number of restaurants 10.02 11.29 10.38 11.66 3.17
Number of supermarkets 1.31 1.50 1.29 1.50 1.14
Number of medical facilities 10.40 12.91 10.77 13.17 2.85
Number of cultural facilities 0.14 0.51 0.15 0.53 1.10
Number of churches 1.13 1.49 1.18 1.54 3.27

Distance to main station (km) 2.89 2.02 2.86 2.02 1.69
Distance to city hall (km) 2.81 1.88 2.79 1.88 0.90
Distance to main church (km) 2.81 1.93 2.78 1.93 1.19
Distance to airport (km) 5.55 1.65 5.55 1.64 0.07
Travel time to main station (minutes) 16.25 8.80 16.11 8.64 1.64

Observations 2,283 15,142

Notes: This table describes the characteristics of the cold-list individuals in the treatment and control
groups. The residency duration in the urban area is censored after 8 years. We measure travel time to the
main station using public transportation at 9 : 00am on weekdays. For dummy variables, the first moment
is sufficient to infer the entire distribution. Rosenbaum and Rubin (1983) classify absolute standardized
difference (std. diff.) of more than 20 as large.
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B Identification of ATEs and CATEs
To achieve identification, we have to assume that the stratified randomization was ap-

propriately conducted, ensuring p(z, x) = Pr(Di = 1|Zi = z, X i = x) = Pr(Di = 1|Zi =
z) = p(z) and (Yi(1), Yi(−1)) ⊥⊥ Di|Zi = z. Furthermore, we have to assume that the

probability of receiving the gift is between zero and one, 0< p(z)< 1.

Under these assumptions, the following equations prove that the CATEs are identified

from observable data:

δ(x)
LIE
= EZ |X=x[E[Yi(1)− Yi(−1)|Zi = z, X i = x]],

Experiment
= EZ |X=x[E[Yi(1)|Di = 1, Zi = z, X i = x]− E[Yi(−1)|Di = −1, Zi = z, X i = x]],

SUTVA
= EZ |X=x[E[Yi|Di = 1, Zi = z, X i = x]− E[Yi|Di = −1, Zi = z, X i = x]],

where the first equality is an application of the law of iterative expectations (LIE), the

second equality holds under the experimental design, and the last equality under the

SUTVA. The identification proof for the ATEs follows from the LIE, δ = E[δ(X i)].
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C Identification with AIPW Scores
To prove that δ = E[Γi] and δ(x) = E[Γi|X i = x], it is sufficient to prove that

E [Yi(1)|X i = x] =E [Γi(1)|X i = x] = E

�

µ1(Zi) +
1+ Di

2
·

Yi −µ1(Zi)
p(Zi)

�

�

�

�

X i = x

�

,

E [Yi(−1)|X i = x] =E [Γi(−1)|X i = x] = E

�

µ−1(Zi)−
Di − 1

2
·

Yi −µ−1(Zi)
1− p(Zi)

�

�

�

�

X i = x

�

.

We focus on E[Γi(1)|X i = x]. We have:

E [Γi(1)|X i = x] =E

�

µ1(Zi) +
1+ Di

2
·

Yi −µ1(Zi)
p(Zi)

�

�

�

�

X i = x

�

, (C.1)
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=EZ |X=x E

��

1{Di = 1}Yi

p(z, x)

�

�

�

�

X i = x , Zi = z

��

, (C.5)

=EZ |X=x E [[Yi|Di = 1, X i = x , Zi = z]] , (C.6)

=EZ |X=x E [[Yi(1)|Di = 1, X i = x , Zi = z]] , (C.7)

=EZ |X=x E [[Yi(1)|X i = x , Zi = z]] , (C.8)

=E [Yi(1)|X i = x] . (C.9)

In (C.1), we use the definition of Γi(1). In (C.2), we just make a rearrangement. In

(C.3), we apply the law of iterative expectations. In (C.4), we exploit that p(z) =
p(z, x) because of our experimental design (only the characteristics in Zi have an im-

pact on the probability of receiving the gift). Note that the second right-side term can-

cels, because p(z, x) = E [(1+ Di)/2|X i = x , Zi = z]. In (C.5), we replace (1 + Di)/2
with the indicator function 1{Di = 1}. In (C.6), we apply the discrete law of itera-

tive expectations backwards. In (C.7) and (C.8), we use (Yi(1), Yi(−1)) ⊥⊥ Di|Zi = z,

the conditional-independence assumption, which holds by the experimental design. In
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(C.9), we apply the law of iterative expectations backwards. This finishes the proof that

E [Yi(1)|X i = x] = E[Γi(1)|X i = x]. The proof that E [Yi(−1)|X i = x] = E[Γi(−1)|X i =
x] proceeds analogous.
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D Nuisance Parameters

Table D.1: Coefficients of nuisance parameters

Logit OLS
Donation Donations Donations
dummy without gift with gift

(1) (2) (3)
Coef. Std. err. Coef. Std. err. Coef. Std. err.

Panel A: Warm list

Female dummy -0.009 0.023 -3.67** 1.69 -5.00** 1.91
Single dummy 0.009 0.023 0.31 1.74 1.22 1.98
Widowed dummy -0.041 0.050 -1.29 3.54 2.40 4.41
Age quintiles:

2nd quintile 0.005 0.029 -3.96* 2.13 1.22 2.42
3rd quintile 0.004 0.030 -5.68** 2.20 -3.20 2.51
4th quintile 0.006 0.031 -2.61 2.31 1.12 2.64

Baseline willingness to donate quintiles:
2nd quintile -0.002 0.031 -29.64*** 2.33 -25.76*** 2.65
3rd quintile 0.001 0.030 -24.81*** 2.23 -19.02*** 2.55
4th quintile 0.003 0.030 -12.73*** 2.23 -7.94*** 2.54

Intercept 0.498*** 0.031 37.13*** 2.27 32.44*** 2.59

Panel B: Cold list

Female dummy -0.003 0.046 -0.002 0.04 0.18 0.20
Single dummy -0.003 0.052 -0.10** 0.05 -0.28 0.23
Widowed dummy 0.027 0.176 -0.01 0.17 0.93 0.77
Age quintiles:

2nd quintile 0.009 0.065 0.09 0.06 0.22 0.28
3rd quintile 0.002 0.067 0.10 0.06 0.03 0.29
4th quintile 0.001 0.068 0.20*** 0.06 0.45 0.30

Intercept -1.891*** 0.068 0.14** 0.07 0.32 0.30

Notes: This table shows the coefficients of the nuisance parameters. Donations (euro) are measured
during the first year after the gift was sent. ***/**/* indicate statistical significance at the 1%/5%/10%
level.
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E Additional Results of the Sorted-Effects Model

Table E.1: Mean characteristics of the groups with the 10% largest and smallest treat-
ment effects in the warm list

10% Largest 10% Smallest Difference
Mean Std. err. Mean Std. err. Mean Std. err. J P-val.
(1) (2) (3) (4) (5) (6) (7)

Panel A: Socioeconomic characteristics

Female dummy 0.49 0.05 0.41 0.05 0.08 0.08 1.00
Single dummy 0.55 0.05 0.49 0.05 0.06 0.08 1.00
Widowed dummy 0.11 0.03 0.04 0.03 0.06 0.04 0.94
Age (years) 70.84 1.72 67.45 1.90 3.39 3.10 1.00
Residency duration (years) 7.28 0.21 6.93 0.24 0.36 0.32 1.00

Panel B: Donation history before the experiment

Num. donations prev. 8 years 3.64 0.27 4.42 0.29 -0.78 0.43 0.79
Max. don. prev. 8 years (euro) 55.05 6.05 70.13 8.36 -15.08 12.37 0.99
Total don. prev. 8 years (euro) 161.7 24.79 269.5 30.57 -107.9 43.85 0.37
Donations 1 year ago (euro) 25.53 4.94 50.67 6.96 -25.13 9.29 0.24
Donations 2 years ago (euro) 19.36 4.11 41.82 5.46 -22.46 7.81 0.17
Donations 3 years ago (euro) 26.21 3.74 36.08 4.88 -9.88 7.08 0.97
Donations 4 years ago (euro) 23.70 3.94 29.41 4.74 -5.71 7.22 1.00
Donations 5 years ago (euro) 21.33 4.22 31.81 4.52 -10.49 7.04 0.95

Panel C: Geospatial information about home address

Elevation (meters) 315.4 1.10 321.3 1.51 -5.98 2.11 0.18
In 300 meters proximity:

Number of restaurants 8.96 1.38 7.50 1.19 1.46 2.26 1.00
Number of supermarkets 0.79 0.15 1.12 0.14 -0.32 0.23 0.98
Number of medical facilities 9.21 1.54 9.42 1.46 -0.21 2.50 1.00
Number of cultural facilities 0.35 0.08 0.24 0.09 0.11 0.14 1.00
Number of churches 1.15 0.19 1.31 0.18 -0.16 0.29 1.00

Distance to main station (km) 3.70 0.24 3.49 0.26 0.21 0.40 1.00
Distance to city hall (km) 3.57 0.24 3.30 0.24 0.28 0.37 1.00
Distance to main church (km) 3.60 0.23 3.37 0.24 0.23 0.39 1.00
Distance to airport (km) 5.87 0.17 5.38 0.16 0.49 0.23 0.58
Time to main station (minutes) 19.75 1.11 17.99 1.05 1.75 1.84 1.00

Notes: This table shows the mean characteristics of the groups with the 10% largest and smallest treatment
effects in the warm list. We report joint p-values (J P-value), which account for simultaneous inference
on several characteristics. We employ the so-called single-step methods to control the family-wise error
rate (see, e.g., Chernozhukov et al., 2018b, for details). Standard errors are calculated with a multiplier
bootstrap using 500 replications. The residency duration in the urban area is censored after 8 years. We
measure travel time to the main station using public transportation at 9 : 00am on weekdays.
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Table E.2: Mean characteristics of the groups with the 10% largest and smallest treat-
ment effects in the cold list

10% Largest 10% Smallest Difference
Mean Std. err. Mean Std. err. Mean Std. err. J P-val.
(1) (2) (3) (4) (5) (6) (7)

Panel A: Socioeconomic characteristics

Female dummy 0.71 0.09 0.49 0.05 0.22 0.13 0.77
Single dummy 0.52 0.11 0.61 0.05 -0.09 0.12 0.99
Widowed dummy 0.11 0.02 0.06 0.01 0.05 0.03 0.66
Age (years) 55.75 3.75 51.84 1.71 3.92 4.15 0.99
Residency duration (years) 5.63 0.62 6.55 0.22 -0.92 0.70 0.94

Panel B: Geospatial information about home address

Elevation (meters) 320.3 1.26 318.8 1.01 1.48 1.53 0.99
In 300 meters proximity:

Number of restaurants 10.09 1.51 10.09 1.22 0.00 1.85 1.00
Number of supermarkets 1.34 0.18 1.22 0.16 0.12 0.25 1.00
Number of medical facilities 18.73 2.97 11.54 1.83 7.19 2.92 0.28
Number of cultural facilities 0.09 0.05 0.39 0.06 -0.30 0.08 0.02
Number of churches 1.12 0.30 1.42 0.14 -0.30 0.36 0.99

Distance to main station (km) 3.33 0.28 3.87 0.25 -0.54 0.31 0.76
Distance to city hall (km) 2.63 0.32 3.64 0.26 -1.02 0.33 0.09
Distance to main church (km) 2.91 0.30 3.71 0.27 -0.79 0.32 0.28
Distance to airport (km) 4.24 0.27 5.42 0.18 -1.18 0.39 0.10
Time to main station (minutes) 16.51 0.96 20.19 1.25 -3.68 1.22 0.10

Notes: This table shows the mean characteristics of the groups with the 10% largest and smallest treatment
effects in the cold list. We report joint p-values (J P-value), which account for simultaneous inference
on several characteristics. We employ the so-called single-step methods to control the family-wise error
rate (see, e.g., Chernozhukov et al., 2018b, for details). Standard errors are calculated with a multiplier
bootstrap using 500 replications. The residency duration in the urban area is censored after 8 years. We
measure travel time to the main station using public transportation at 9 : 00am on weekdays.
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F Example Decision Tree

Figure F.1: Illustration of decision tree

Maximum Previous 
Donation ≤ 101.76 Euro

Elevation of Home 
Address ≤ 313.55 m

Total Previous  
Donations ≤ 800 Euro

Gift
N = 758

32%
4.94 Euro

No Gift
N = 1526 

65%
-2.29 Euro

Gift
N = 48

2%
81.13 Euro

No Gift
N = 22

1%
-123.08 Euro

TRUE FALSE

a) Warm list

Number of Restaurants 
in Proximity ≤ 5

Distance to City Hall ≤ 
1.28 km

Distance to Airport ≤ 
3.06 km

Gift
N = 189

1%
-0.02 Euro

No Gift
N = 7766 

45%
-1.10 Euro

Gift
N = 58
0.3%

21.44 Euro

No Gift
N = 9412

54%
-1.03 Euro

TRUE FALSE

b) Cold list

Notes: This figure illustrates one example decision tree. For each terminal leaf, it reports the total and
relative number of observations and the effect of the gift on net donations during the first year after the
experiment. To derive the decision trees, we estimate Exact Policy-Learning Trees with a search depth of
two (Zhou et al., 2018).
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G Sensitivity Analysis

Table G.1: Results for alternative estimators in the warm list

Share Net Optimal targeting vs.
treated donations all-gift no-gift

(1) (2) (3) (4)

Logit
Baseline model 0.47 16.19*** 0.72 0.78

(0.90) (0.81) (0.82)
Flexible model 0.43 15.45*** -0.02 0.04

(0.80) (0.91) (0.71)
Logit Lasso 0.83 15.86*** 0.39 0.45

(0.91) (0.62) (0.98)
Exact Policy-Learning Tree

depth = 1 0.39 15.05*** -0.42 -0.36
(0.77) (0.98) (0.61)

depth = 3 0.34 15.49*** 0.02 0.08
(0.88) (0.87) (0.76)

CART
depth = 2 0.11 16.10*** 0.63 0.68

(0.94) (0.93) (0.69)
Cross-validated depth 0.33 17.40*** 1.93** 1.98**

(0.96) (0.83) (0.80)
Classification Forest 0.42 15.88*** 0.41 0.47

(0.83) (0.89) (0.73)

Notes: This table shows the results of our robustness checks for warm-list individuals. The outcome
variable is the donation amount (euro) during the first year after the gift was sent. Standard errors are in
parentheses. ***/**/* indicate statistical significance at the 1%/5%/10% level.
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Table G.2: Results for alternative estimators in the cold list

Share Net Optimal targeting vs.
treated donations all-gift no-gift

(1) (2) (3) (4)

Logit
Baseline model 0.047 0.15*** 0.96*** -0.01

(0.04) (0.10) (0.03)
Flexible model 0.058 0.11*** 0.93*** -0.05*

(0.03) (0.10) (0.03)
Logit Lasso 0.0003 0.16*** 0.97*** -0.002

(0.02) (0.10) (0.001)
Exact Policy-Learning Tree

depth = 1 0.07 0.06*** 0.87*** -0.10***
(0.02) (0.10) (0.01)

CART
depth = 2 0.042 0.10*** 0.92*** -0.06***

(0.02) (0.10) (0.02)
Cross-validated depth 0.0006 0.16*** 0.97*** -0.001**

(0.02) (0.10) (0.0003)
Classification Forest 0.001 0.15*** 0.97*** -0.005

(0.02) (0.10) (0.003)

Notes: This table shows the results of our robustness checks for cold-list individuals. The outcome variable
is the donation amount (euro) during the first year after the gift was sent. In the cold list, implementing
an Exact Policy-Learning Tree with a depth of three is computationally infeasible. Standard errors are in
parentheses. ***/**/* indicate statistical significance at the 1%/5%/10% level.
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