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We’re going into it to win the series. But you’ve got to take it game by game,

one game at a time.

Tyronn Lue1

1 Introduction

Most situations of economic decision making, in particular in the context of internal

labor markets, involve dynamic and strategic aspects. For instance, in the context of

promotion tournaments, workers interact with their employer as well as with their co-

workers repeatedly and face incentives that involve strategic and dynamic components

related to higher pay, better promotion chances, or attractive outside offers in the future.

Hence, the power and usefulness of such tournament schemes for incentive provision and

promotion decisions in organizations depends crucially on an inherently dynamic trade-

off, which requires forward-looking behavior of agents in order to be effective. Several

influential contributions explicitly consider the dynamic incentive effects of promotion

tournaments. For instance, Rosen (1986) argues that the continuation value of future

promotion possibilities is an important determinant of current effort choices. Likewise,

Ghosh and Waldman (2010) assume that competing workers anticipate the signal value

of a promotion for future wage negotiations. The key assumption underlying these views

is that the next promotion is not the ultimate goal, but rather a means to an end to

forward-looking agents, namely either the prerequisite for future promotions to even more

attractive positions within the same organization, or a signal observable by competing

organizations that allows workers to demand higher wages. This should be reflected in

the influence of expected future payoffs on behavior.

While in theory the influence of dynamic incentives is rather straightforward and

intuitive, in reality it is not clear whether and to what extent decision makers incorporate

dynamic incentives in their behavior. On the contrary, advice to take only ‘one step at

a time’ and disregard complex future consequences of current actions is quite common.

1Tyronn Lue, head coach of the Cleveland Cavaliers on ESPN. Retrieved Au-
gust 11, 2016. http://www.espn.com/nba/playoffs/2016/story/_/id/16243732/

nba-finals-2016-tyronn-lue-finds-voice-cleveland.
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As indicated by the introductory quote from basketball, professional athletes often focus

entirely on the current game and claim to avoid thinking about the future consequences of

winning or losing, i.e., the continuation value beyond success in the current game.2 Despite

the ubiquity of dynamic incentives in the theoretical literature, whether and to what

extent individuals act in a forward looking way when faced with dynamic incentives such

as promotion incentives in tournament settings has not been tested systematically. There

is currently little to no empirical evidence whether decision makers are indeed forward

looking in dynamic strategic interactions as often assumed in theory, even though the

existence and extent of forward-looking behavior is essential for many practical purposes.

This paper investigates empirically whether agents are forward looking in multistage

tournaments, testing one of the central theoretical predictions of the tournament liter-

ature, namely that agents are not only competing for the immediate prize for winning

in any non-final round of multistage tournaments, but also for the continuation value of

remaining in the tournament that entails the chance to win additional prizes in future

rounds, see, e.g., Rosen (1986). We address the question by investigating how the expected

relative strength in future interactions affect behavior in dynamic tournament situations,

based on the predictions of a canonical multistage pairwise elimination tournament model,

extended to a team setting. Since continuation values are typically unobservable in field

data, the analysis exploits the fact that the continuation value is decreasing in the strength

of future opponents, ceteris paribus: reaching the next round in a multistage tournament

is more attractive if the future opponent is weak and chances to win a prize in the next

round are high, than if the future opponent is strong and chances to win a prize in the

next round are low. Consequently, everything else equal, current effort is expected to

decrease in the strength of the future opponent if, and only if, agents are forward looking

and take the continuation value into account. Alternatively, if agents focus entirely on the

immediate consequences of their actions and omit the continuation value, current effort

should be independent of the strength of the future opponent.

2Similar quotes can be found from other sports. For instance, the famous NFL coach Charles Henry
“Chuck” Noll once said “The key to a winning season is focusing on one opponent at a time. Winning
one week at a time. Never look back and never look ahead.” (BrainyQuote.com. Retrieved August 11,
2016. http://www.brainyquote.com/quotes/quotes/c/chucknoll392799.html).
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Considering teams rather than individuals in this context has several advantages.

First, team work is the rule rather than the exception in most occupations, and perfor-

mance is often measured at the team level. The most recent European Working Conditions

Survey (EWCS 2010) indicates, for example, that close to 60% of all employees in mem-

ber states of the European Union work in teams, and available numbers for the U.S. are

comparable. Second, the competition between individuals is a special case of competition

between teams. In particular, extending the Rosen (1986) multistage tournament model

to a team setting indicates that aggregate team effort equals effort provision by individ-

ual contestants in the absence of free-riding, and that free-riding works against finding

evidence for forward-looking behavior at the team level. Providing evidence in favor of

forward looking behavior in teams thus provides a strong indication that decision makers

indeed incorporate dynamic incentives in their choices. Moreover, we can explicitly test

the theoretical prediction that free-riding within a team affects forward looking behav-

ior, since the data allow for the construction of an appropriate empirical measure of free

riding.

We use data from the playoffs of the National Basketball Association (NBA) cham-

pionship tournament to test the empirical hypothesis. The NBA playoffs provide an ideal

setting for this purpose. The structure of the competition implies that information on the

strength of potential future opponents is publicly available, and the data provide precise

information about all required elements, such as ability, effort and outcomes. Moreover,

the tournament involves considerably large stakes and professional athletes are arguably

familiar with the decision environment they are exposed to. Finally, the data allow us to

study forward-looking behavior in the team context.

Our findings support the view that decision makers are indeed forward looking, even

when being members of a team. In particular, the results show that, everything else equal,

the expectation of a weaker future opponent team increases aggregate team effort in the

current match. We also find that team effort is negatively affected by the ability of the

current opponent, consistent with the theoretical prediction and previous evidence based

on static interactions. When using the degree of competition for starting positions to

measure free riding within teams, we also find that the degree to which teams incorporate

their relative strength in future competitions is decreasing in the prevalence of free-riding
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within the team. In addition, the empirical results show that the effect of continuation

values on current effort is more important the more convex is the structure of prizes across

stages, as predicted by the theoretical model.

These findings have several implications for promotion tournaments. In particular,

our findings show that even professional athletes who typically claim to focus entirely on

the current game take account of continuation values in multistage tournaments. Employ-

ees are thus even more likely to account for continuation values in corporate tournaments

where human resources management departments try to make career ladders salient for

their employees. This implies that convex wage structures across hierarchy levels are likely

to provide strong dynamic incentives for performance on internal labor markets in orga-

nizations. In addition, our findings indicate that team-based performance evaluations,

which are common in many occupations, are unlikely to reduce dynamic incentives to

provide effort in promotion tournaments if and only if the prevalence of free-riding within

teams is low.

This paper adds to different strands of the empirical literature on tournaments. The

results contribute to the empirical literature on multistage tournaments and contests.

Even though several recent contributions provide evidence for incentive effects of continu-

ation values when implementing multistage tournaments in the lab – see, e.g., Sheremeta

(2010), Altmann, Falk, and Wibral (2012), or Stracke, Höchtl, Kerschbamer, and Sunde

(2014) – we are not aware of any study that has investigated this issue using field data.

The few existing studies that analyze behavior in multistage tournaments with field data

focus on different aspects. Delfgaauw, Dur, Non, and Verbeke (2015) implement a two-

stage elimination tournament in a field experiment, but they investigate the effect of

variations in the structure of prizes and in the importance of noise within a given stage,

not on the effect of continuation values across stages as done here. Brown and Minor

(2014) account for dynamic incentive effects in multistage tournaments using tennis data,

but they focus on implications for the selection properties using match outcomes. Our

study, instead, opens the black box of how observed outcomes are achieved and investi-

gates whether continuation values affect incentives to provide effort. Thereby, the paper

also contributes to the empirical literature on the implications of tournament design for

behavior, see, e.g., List et al. (2014).
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The results also complement related work on basketball and soccer data that analyzes

different aspects of forward looking behavior in tournaments. Taylor and Trogden (2002)

use data from the NBA as we do and investigate whether teams who are unlikely to

qualify for the playoffs respond to the incentive to lose that is present at the end of regular

seasons. In particular, they test whether teams are forward looking and anticipate the

delayed reward for bad performance in a season, namely the advantageous position in

the draft order that facilitates hiring of strong players for the next season. The crucial

difference to our study is that Taylor and Trogden (2002) analyze whether teams take

account of a delayed reward in a static setting using regular season data, while we consider

multistage tournaments in the playoffs and investigate whether changes in the value of

future strategic interactions affect current behavior. The study by Bartling, Brandes,

and Schunk (2015) tests whether teams behave differently in a loss-frame when their

performance falls behind expectations, thus focusing on expectations and non-expected

utility. In terms of using data from professional basketball to study team production, our

paper also complements the recent study by Arcidiacono, Kinsler, and Price (2017). While

their focus is on investigating productivity spillovers in teams, our findings complement

theirs by investigating the extent to which teams respond to dynamic incentives, and

exploring the role of heterogeneity and free riding.3 Finally, Miklos-Thal and Ulrich

(2016) show for soccer how the prospect of being selected into a national team might

influence effort levels of individual players.

This paper is also related to existing work that investigates the effects of heterogene-

ity on behavior in tournaments. Several papers have investigated empirically whether

incentives to provide effort decrease in the degree of heterogeneity as predicted by Baik

(1994); see Bull, Schotter, and Weigelt (1987) and Chen, Ham, and Lim (2011) for evi-

dence from lab experiments, for example, or Sunde (2009), Brown (2011), and Berger and

Nieken (2014) for evidence from the field. These papers focus on the effect of current het-

erogeneity on current effort in a static one-shot interaction, while we investigate whether

(expected) relative ability in the next stage of a multistage tournament affects current

effort choices. We control for current heterogeneity in our analysis, however, and find

3Data from professional basketball have also been previously used to study risk taking in tournaments
(Grund, Höcker, and Zimmermann 2013), or the determination of wages (Deutscher, Gürtler, Prinz, and
Weimar 2014).
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that current effort is lower if current heterogeneity is high, in line with results reported

in the aforementioned contributions. Therefore, our work complements this literature by

showing that static incentive effects of heterogeneity continue to matter in each stage of

a multistage tournament structure. Finally, the results provide a rationalization of the

convex wage structures across hierarchy levels that are predicted by theory, see Rosen

(1986), and that are typically observed in reality, see, e.g., Lambert, Larcker, and Weigelt

(1993), Eriksson (1999), or Bognanno (2001).

The remainder of the paper is structured as follows. Section 2 presents a simple

prototype model to derive testable hypotheses. Section 3 describes the data, the measures

of heterogeneity and effort, and the empirical strategy. Section 4 presents the main results

and several robustness checks. Section 5 investigates whether the reaction to changes of

continuation values depends on the prevalence of free riding and the convexity of rewards

across stages, respectively, and Section 6 concludes.

2 Theoretical Predictions

2.1 The Model

A Simple Tournament with Two Teams. Consider a tournament with two teams

i = {F; U} who compete for a prize Rnow, where F is the ‘favorite’ and U the ‘underdog’.

Both teams consist of N ≥ 1 symmetric agents. Each agent k within team i chooses costly

effort eik and faces cost of effort c(eik) = eik
ai
, where ai is the average ability of team i.

Assuming that winning the prize Rnow as a team has value Rnow

Mi
for each member of team

i delivers the objective function

Π̂ik = pi[(êi1, ..., êiN); (ê−i1, ..., ê−iN)] ·
Rnow

Mi

−
êik

ai
. (1)

The parameter Mi measures the extent of free-riding within team i.4 Intuitively, low

values of Mi imply that team members internalize the positive externality of their effort

on the payoff of their team members, while high values of Mi imply that team members

4We abstract from heterogeneity within teams, such that individual ability of each agent within team
i is assumed to be homogeneous. Heterogeneity is subsumed by its influence on free riding.
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focus on the private benefit of their effort instead.5 Ability parameters ai and cost of

effort functions, as well as free-riding parameters Mi are common knowledge.

Let winning probabilities pi[(êi1, ..., êiN); (ê−i1, ..., ê−iN)] be determined by the ratio

of team efforts. In particular, winning probabilities are given by the Tullock (1980) lottery

contest technology according to which

pi[(êi1, ..., êiN); (ê−i1, ..., ê−iN)] =

∑N

k=1 êik
∑N

k=1 êik +
∑N

k=1 ê−ik

. (2)

This technology implies that the performance of teams is determined by aggregate effort
∑N

k=1 êik and a multiplicative error term ǫi – see Konrad (2009) for details.6

Under the assumption that members of team i take the aggregate effort
∑N

k=1 êjk by

all members of the opponent team −i as given, it must hold for each member of team i

that the marginal value of increasing the probability of winning through a change in the

aggregate effort of team i is equal to the constant marginal cost of effort, i.e.,

∂pi[
∑N

k=1 êik;
∑N

k=1 ê−ik]

∂
∑N

k=1 êik
·
Rnow

Mi

=
1

ai
.

Even though individual effort choices are not uniquely identified in equilibrium due to

the linearity of the cost of effort function, the aggregate equilibrium effort of team i is

uniquely determined by mutually best responses as

N
∑

k=1

êik = αi ·
θi

(1 + θi)2
·Rnow , (3)

where αi =
ai
Mi

is the absolute strength of team i and θi =
(

αi

α
−i

)

represents the relative

strength of team i vis-a-vis the opponent team. Intuitively, αi = ai
Mi

is the absolute

strength of team i, since the strength of a team increases in the individual ability of each

5The optimal effort choice of each member of team i corresponds to the classical 1/N free-riding
problem for Mi = N .

6In particular, the winning probability of team i can also be defined as

pi[(êi1, ..., êiN ); (ê−i1, ..., ê−iN )] = Pr([
N
∑

k=1

êik] · ǫi > [
N
∑

k=1

ê−ik] · ǫ−i) ,

where ǫi and ǫ−i are independent draws from the exponential distribution with mean one. For details on
how to prove this equivalence, see Konrad (2009), p.52f.
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team member, while it is decreasing in the prevalence of free-riding behavior within a

given team. Inserting aggregate equilibrium efforts by both teams in equation (2) reveals

that θi is a sufficient statistic for the winning probabilities of teams F and U, which is

intuitive given that θi measures the relative strength of competing teams. To ensure that

the winning odds of the favorite team are at least as large as the winning odds of the

underdog team, we subsequently assume that αF ≥ αU, i.e., we assume that the ‘favorite’

is stronger than the ‘underdog’ team.

Aggregate equilibrium effort by both teams determines the expected equilibrium

team payoffs. In particular, we obtain the expected equilibrium team payoffs by inserting

aggregate equilibrium efforts by both teams in equation (1):

N
∑

k=1

Π̂ik =
Nθ2i + (N − 1)θi

(1 + θi)2
·
Rnow

Mi

. (4)

Equation (4) reveals that the expected equilibrium team payoff is strictly increasing in

θi, i.e., in the relative ability of team i. Intuitively, a higher relative ability does not only

increase equilibrium winning odds, but also the expected value of participating in the

tournament, the expected equilibrium team payoff.

Accounting for Future Opponents and Multiple Stages. Consider the same set-

ting as before. Suppose, however, that the two teams i = {F; U} not only compete for the

prize Rnow, but also for the right to participate in the next stage of the tournament where

the winner of the current interaction competes with a team j for a prize Rfut. In such a

setting, current aggregate team effort does not only depend on the absolute and relative

strength of competing teams as suggested in equation (3), but also on characteristics of

the (expected) future opponent team j.7 Intuitively, participating in future interactions

of the tournament becomes more attractive the weaker the future opponent j, since this

implies that the chance to win against this opponent on the next stage of the tournament

– and thus the chance to receive the prize Rfut – are higher. At the same time, it is

comparably unattractive to participate in future stages of the tournament if the future

7We assume that both the relative strength of current opponent teams and future opponent teams are
common knowledge.
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opponent team j is strong, since a team is less likely to win on the next stage of the

tournament in this case, and thus unlikely to receive the prize Rfut.

Formally, the value of participation in the next stage of the tournament depends on

the relative strength of team i vis-a-vis team j. Defining the relative strength of team

i in the competition with the future opponent team j as κi =
(

αi

αj

)

, it follows from

equation (4) that the continuation value CVi for team i in terms of the expected value of

participating in the next stage of the tournament is formally defined as

CV∗

i (κi, Rfut,Mi) =
N [κi]

2 + (N − 1)κi

(1 + κi)2
·
Rfut

Mi

. (5)

The aggregate value of participation in the next stage of the tournament for team i,

CV∗

i (κi, Rfut,Mi), is increasing in future relative strength κi, since the chances of team i to

win against the future opponent team j and thus to receive the prize are strictly increasing

in future relative strength of team i. Moreover, the continuation value is increasing in

the prize Rfut awarded to the winner of the future interaction, and decreasing in the

prevalence of free-riding Mi within team i. The intuitive explanation for this last effect

is that teams who manage to avoid free-riding behavior are stronger in any competition,

ceteris paribus.

When considering individual optimization problems in the multistage tournament,

each member of team i has the objective function

Πik = pi[(ei1, ..., eiN); (e−i1, ..., e−iN)] ·
Rnow + CV∗

i (κi, Rfut,Mi)

Mi

−
eik

ai
. (6)

The only difference to the setting discussed in the previous section is that individuals

now also incorporate the value of participation in future stages of the tournament in

their current effort choice. This implies that the prize at stake is different as it includes

also the continuation value. When accounting for these differences in the prize, aggregate

equilibrium effort by all members of team i in a non-final stage of a multistage elimination

tournament is formally given by

N
∑

k=1

e∗ik = αi · f(θi) · g(κi,Mi, Rnow, Rfut) (7)
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where f(θi) = θi
(1+θi)2

and g(κi,Mi, Rnow, Rfut) = [Rnow + CV∗

i (κi,Mi, Rfut)]. Conse-

quently, f(·) is increasing in θi if 0 < θi < 1, and decreasing in θi if θi > 1, and

g(κi,Mi, Rnow, Rfut) is increasing in κi and Rfut, and decreasing in the prevalence of free

riding Mi.
8

2.2 Testable Hypothesis

Condition (7) delivers several comparative static predictions. In the following, we de-

rive predictions that will then be tested in the empirical part below. Consider first the

prediction that aggregate effort by team i in a non-final stage of a multistage pairwise

elimination tournament depends on the team’s absolute strength αi. Intuitively, stronger

teams provide ceteris paribus more effort than weaker ones, as being stronger means that

effort costs of all team members are lower (ai) and/or free-riding is less prevalent (Mi).

Together, this implies that aggregate effort is increasing in the absolute strength of team

i. Second, condition (7) predicts that aggregate effort depends on the relative strength

of team i in the current interaction, θi. More precisely, the relative strength affects ag-

gregate team effort through the concave function f(θi) that has its maximum value when

competitors are equally strong, i.e., at θi = 1. The greater is the heterogeneity among

the competing teams in terms of their absolute strength, the lower is f(θi) and thus the

aggregate effort by team i, regardless of whether team i is the stronger or weaker team.

In this sense, f(θi) reflects the well-known adverse incentive effect of heterogeneity in

tournaments according to which both favorites and underdogs compete less intensively as

the heterogeneity among them increases (Baik 1994).9

Finally, consider the last part of condition (7), which predicts that aggregate team

effort increases in the prize for the winner of the current stage, Rnow, and in the team-

specific continuation value CV∗

i (κi,Mi, Rfut). Note that the strength of a future opponent

8 See Appendix C for formal proofs. For simplicity, we abstract from the impact of differences between
CV∗

F(κF,MF, Rfut) and CV∗

U(κU,MU, Rfut) on the relative strength of both teams in the current interaction.
Accounting for the fact that the continuation value is higher for the favorite team ‘F’ than for the underdog
team ‘U’ increases the relative strength disadvantage of the underdog. In particular, the relative strength

of team i would then be given by θi =
(

αi(Rnow+CV∗

i
)

α−i(Rnow+CV∗

−i
)

)

. This simplifying assumption is uncritical for

the results (proofs are available upon request).
9By definition of θi, it must hold that θF =

1
θU
. Since f(θi) = f

(

1
θi

)

holds, it follows that f(θF) = f(θU),

which proves the argument that f(θi) controls for the effect of heterogeneity in the absolute strength of
competitors on aggregate equilibrium team effort.
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team affects current team effort only through this continuation value. At the same time,

aggregate team effort in the current interaction of team i will react only to variation in

the future relative ability κi if members of team i are forward looking and incorporate the

continuation value in their current decisions. Even though the theoretical model does not

provide any reason why members of a team should not be forward looking, behavior in

real life competitions might be different, as indicated by the introductory quote by Chuck

Noll. Intuitively, thinking about future stages of the tournament for which competitors

are not yet qualified might distract attention from the current interaction, so that reaching

these stages might become less likely. The model provides a straightforward hypothesis to

test if members of a team are forward-looking by investigating whether or not aggregate

team effort in the current interaction is related to the relative future strength of a team:

Hypothesis 1 (Forward Looking Behavior). Aggregate team effort in the current inter-

action is increasing in the relative future strength κi of team i in the next stage of the

tournament if and only if members of team i are forward looking; otherwise team effort

in the current interaction is independent of κi.

3 Empirical Implementation

3.1 Data

Data from professional basketball provide a unique possibility to test the hypothesis that

teams incorporate future stages of the tournament in their behavior. The empirical anal-

ysis is based on data from playoff tournaments in the National Basketball Association

(NBA).10 During the regular season, a round-robin tournament is conducted in two sep-

arate conferences. After the regular season, the best teams participate in a pairwise

elimination tournament (the “playoffs”). Every game of basketball in the NBA is a tour-

nament covering 48 minutes of net playing time, split up in 4 quarters. In the regular

season as well as during the playoff tournament every single game must have a winner.

In case there is a tie at the end of regular time, a potentially infinite number of overtime

periods of five minutes follows until a winner is determined. The empirical analysis is

10All data were collected online from www.basketball-reference.com using historical boxscores and
team statistics.
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based on information about the full time outcome of a game. Dummy variables are used

to control for games that are decided in one or multiple overtime periods.

For organizational reasons, two separate elimination tournaments take place (the

Eastern and Western conference), and the winners of each tournament only meet in a

best-of-7 series of games, the “Finals”, to determine the champion.11 The empirical anal-

ysis focuses on the pairwise elimination tournaments that take place at the level of the

conferences. Each tournament is structured into four stages; on each stage, two teams

compete in best-of-5 (in stage 1 before the 2003/2004 NBA season) and otherwise best-

of-7 match-ups; i.e., the winner is determined as the team that wins three or four games

against the respective opponent team. The data contain information for 2,199 individual

playoff games from the 1983/84 through 2013/14 seasons. While we restrict attention

to data from the playoff phase of the season to capture the tournament structure, per-

formance data from the regular season is used as background information to control for

ability and other team-specific characteristics.

3.2 Measuring the Absolute and Relative Strength of Teams

Absolute Strength. The data cover detailed information on final outcomes of games,

final scores, and various statistics of team performance. One of the key variables for the

purpose of this paper is an empirical counterpart for the measure αi of absolute strength

employed in the theoretical analysis. The absolute strength of a team αi does not only

directly influence the level of effort – see equation (7) for details – but is also necessary to

determine the current and the future relative strength measure. A naive statistic of the

number of scores or the share of games won in the regular season is readily available, but

might be misleading. Due to regional separation of the league into two conferences, differ-

ent teams face different schedules and different pools of competitors, raising problems of

comparability of scores during the regular season. We therefore employ the Simple Rat-

ing System (SRS) as calculated by the web-site www.basketball-reference.com.12 This

rating system is based on the regular season point differential for each team, weighted by

11The structure is illustrated by the playoffs of the 2013 season, see Figure 7 in Appendix A.
12This website provides free sports data and calculates advanced statistics for multiple professional

sports leagues. The site is run by Sports Reference LLC, http://www.sports-reference.com.
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Figure 1: Validation of the Measure of Absolute Strength Using the SRS
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the team’s strength of schedule.13 The resulting measure of absolute strength corresponds

to αi in the theoretical model. This measure reflects both innate ability ai of members of

team i and the prevalence of free-riding Mi within team i, since both factors are likely to

matter for regular season performance. Importantly, the SRS-based measure of absolute

strength employed in the subsequent analysis is exclusively based on information from the

regular season preceding the respective elimination tournament. This measure is thus not

influenced by the performance during the playoffs.

To validate the SRS-based measure of absolute strength, we compare it to betting

odds and the seeds in the playoffs. Reassuringly, the winning probabilities calculated

from using this measure of absolute strength are highly correlated with betting odds as

is illustrated in the left panel of Figure 1.14 The SRS-based measure of absolute strength

is also highly correlated with the performance-based tournament seeds in the playoffs as

shown in the right panel of Figure 1.

Relative Strength in Current Interaction. With αit being measured by the SRS

score of a favorite and an underdog team (i = {F,U}), respectively, who compete on

stage t, it is straightforward to compute empirical counterparts for the measure of relative

13As the SRS is negative for some team-years, we re-scale it as SRSrescaled = SRS +10 to restrict the
measure to positive values and thus allow for a straightforward calculation of Tullock win probabilities.

14We obtained betting odds data from www.covers.com.
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strength θit employed in the theoretical model. Close inspection of condition (7) reveals,

however, that aggregate equilibrium team effort is affected by the heterogeneity in ab-

solute strength between teams rather than by the relative strength of each team. Given

that relative strength θi affects aggregate equilibrium team effort through the function

f(θi), variation in relative strength has opposite effects on the effort provision of favorite

and underdog teams. Intuitively, heterogeneity increases if the relative strength of the

favorite increases, while heterogeneity decreases if the relative strength of the underdog

improves, which implies that improvements in the relative strength of the underdog team

increase aggregate equilibrium team effort, while the opposite holds for improvements of

the relative strength of the favorite teams.

To avoid this complication in the empirical analysis, we use the relative strength of

the favorite θF as a measure of heterogeneity for both the underdog and the favorite team.

Current heterogeneity in stage t is computed as

heterogeneityt =
αFt

αUt

, (8)

where heterogeneityt ≥ 1 holds due to the definition of favorite and underdog teams (since

αF ≥ αU). The advantage of this measure is that the effects of variation in heterogeneityt

on aggregate team equilibrium effort work in the same direction for both teams. Intu-

itively, a higher relative strength of the favorite implies that heterogeneity in the current

interaction increases, such that aggregate team equilibrium effort decreases.

Figure 2 Panel (a) plots the empirical kernel density of the respective heterogeneity

measure and shows that games with comparatively low degrees of heterogeneity are most

frequently observed in the data. High degrees of heterogeneity where θF > 1.5 are rather

the exception than the rule.

Relative Strength in Future Interaction. The empirical measure for the future

relative strength of team i ∈ {F,U} in stage t+1 of the tournament against the opponent

team j with absolute strength αj,t+1 – which is labelled Et[rel. strengtht+1] in the following
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and corresponds to κi in the theoretical analysis – is based on information available at

stage t and constructed as follows:

Et [rel. strengthi,t+1] =
αi

Et [αj,t+1]
. (9)

The only difference between this empirical measure and its counterpart κi in the theoretical

analysis is that the absolute strength of the future opponent team is not known with

certainty and thus reflects an expected rather than a predetermined value. The reason for

this difference is that, in many instances, the identity of the future opponent team is not

known yet when decisions are made on the current stage. The structure of the competition

implies, however, that teams competing in stage t know that they will compete against the

winner of the parallel stage-t match on the next stage. Given that the absolute strength of

those teams competing in this parallel match are observable, teams can form expectations

about the probabilities with which they face any one of the two potential opponent teams

in the next stage. Therefore, we compute the expected strength of the opponent i in

stage t + 1 as follows in the empirical analysis: Assume that there are two potential

future opponent teams s and l with absolute strength αs,t and αl,t. The expected relative

strength of the opponent team j that team i faces in stage t+1 upon winning the current

stage is then defined as

Et [αj,t+1] = ps · αs,t + (1− ps) · αl,t , (10)

where ps = αs,t

αs,t+αl,t
is the probability that team s wins against team l in the parallel

match on stage t. Whenever the identity of the future opponent team is already known

at the time of a game in the parallel series, we replace the convex combination by the

absolute strength of the actual next competitor.

Arguably, there are several alternative ways to construct the expected strength of the

opponent on stage t + 1, αj,t+1, depending on the assumptions made on the expectation

formation process. For simplicity and transparency, we restrict attention to competitors

on the immediately next stage in the construction of the empirical measures. To account

for potential concerns regarding the construction of this measure, we present results from

several additional robustness checks that are derived under different assumptions regard-
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Figure 2: Distribution of Heterogeneity and Relative Future Strength
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Notes: The figures plot kernel densities of the heterogeneity measure and the measure of expected relative
strength in the next round, respectively, using the raw data used in the estimation exercises. N = 434

ing the expected relative strength on the next stage. In particular, we consider measures

that are based exclusively on the relative strength of the favorite in the parallel match-up,

or adjusted measures that incorporate for each game if the future competitor is already

known at the time of the game and accordingly replace the convex combination by the

ability of the actual next competitor. Panel (b) of Figure 2 plots the empirical kernel

density of future relative strength for current favorites.

3.3 Measuring Effort

Personal Fouls and the Intensity of Competition. Whereas one can think of many

indicators for final outcomes or performance, constructing a measure of effort of a team

or of total effort per game by two teams is not entirely straightforward. In the empirical

analysis of this paper, we use the number of personal fouls that a team is called for as a

proxy for aggregate team effort. A personal foul in basketball is defined as a breach of

the rules that regulate the legal or illegal form of personal contact between players. This

mostly involves attempts to prevent the opposing team from scoring. These fouls are thus

called defensive fouls. Much less frequent are offensive fouls that occur during an offensive

phase when an illegal scoring attempt is observed. Hence, both types of fouls measure

an attempt to change the course of a game in order to win. Consequently, the number
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of fouls in a game is a direct indicator for the intensity of the competition and, thus, for

the effort of the respective team. In principle, fouls measure how intense the defender

attacks his opponent, or how physically close he is in coverage, which may sometimes

result in a personal foul. Notice that for this to hold it is not necessary to assume that

teams explicitly decide to foul their opponent. Rather, it is presumably more likely that

players try to avoid fouls in most instances, but are still more likely to foul the opponent

when defending intensively. In that sense, personal fouls are an almost natural outcome

of an intense game with close physical contact. The higher the intensity, the higher the

probability that a foul is inadvertently committed and called. The intensity of play by a

particular team should thus be closely correlated with the effort provided. In addition, the

total number of fouls committed by a team in the course of a game corresponds closely to

aggregate equilibrium team effort and thus to the theoretical counterpart, since personal

fouls can be committed by all players of a team. The number of personal fouls is mostly

influenced by a team’s own effort, and a good proxy for how much effort members of a

team provide in defense on average. More personal fouls correspond to a more physical,

thus more tiring, style of play.15

One potential concern with this measure of effort is the possibility that fouls are

committed for different reasons than an intensive defense, such as intentional fouls for

tactical reasons. One situation where intentionally committing a foul might be an optimal

strategy for a team is when the members of the team get tired and are not able anymore

to defend without committing a foul. However, even if fouls are committed by mistake,

or tactically, because players are worn out, this provides a useful indicator of the physical

intensity of the match for a given team as fatigue is a clear indicator that the intensity –

and therefore effort – has been on a high level during the game. Committing a foul may

also be an optimal strategy to stop the clock at the end of a very close game when a team

is behind. While it is neither direct offensive or defensive effort, it is still an attempt to

try all available means to win the game. The number of personal fouls thus appears to

be a suitable effort measure for the purposes of this paper.

15One could make the argument that fouls resemble ‘sabotage behavior’ as discussed in Lazear (1989)
rather than ‘effort’. This distinction does not matter for the subsequent analysis, however, since both
measures account for the intensity of competition and move into the same direction when incentives
change.
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Figure 3: Personal Fouls per Game in Regular Season and Absolute Strength (SRS)
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Notes: Average number of personal fouls per game in regular season against SRS. N = 496

Another potential concern with this measure is that the number of personal fouls a

team is called for might be affected by the absolute strength of a team in a counterin-

tuitive manner when thinking about effort. In particular, the theoretical model predicts

that aggregate team effort is increasing in the absolute strength αi, while it seems more

reasonable to expect that stronger teams are more able to avoid fouls even when defending

intensively.

Figure 3 depicts the relation between personal fouls and the strength of a team during

the regular season. The data indeed suggest that stronger teams commit fewer fouls over

the regular season. The corresponding pairwise correlation coefficient is -0.22 and highly

significant. To control for a team’s ability to avoid fouls as well as for the style of play of

a particular team – the defense of some teams might explicitly decide to foul more often

independent of the opponent team – our preferred proxy for team effort is therefore the

number of fouls per game relative to the average per-game number of fouls the team has

committed in the regular season preceding the playoffs.16

Figure 4 presents a box plot of the effort distribution during the playoffs by ability

decile and shows that effort in the playoffs is, in general, larger than in the regular season.

16Relating the number of fouls per game relative to the average number of fouls during the regular
season plays a similar role as season-team fixed effects by accounting for different styles of play, team
compositions, coaching styles, etc., in a given season.
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Figure 4: Effort Measure vs. Deciles of Absolute Strength (SRS)
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Notes: Effort, as defined in (11) for deciles of ability measured by the SRS for rounds 1–3 for NBA
seasons 1984–2014. Outliers are excluded. N = 4398

Moreover, the resulting proxy for aggregate team effort reveals no systematic relationship

with the absolute strength of a team once we account for behavior in the regular season.

Our empirical counterpart for aggregate equilibrium team effort is thus formally defined

as

effort i,k,t =
number of fouls in playoff gamei,k,t

(∑
fouls regular seasoni,k
number of gamesk

) (11)

for team i in year k in stage t of the tournament. Teams tend to commit more fouls in

the playoffs than in the regular season on average – which is what one would expect given

that stakes are typically higher in the playoffs than in the regular season.

Additional Controls. A potential concern with the proposed proxy for aggregate team

effort is that teams might adjust their behavior to the style of play of their opponents.

It is therefore necessary to control for various indicators that describe how opponents

usually play the game. The nature of the data allows us to use regular season statistics

in order to control for team-specific style of play. One crucial measure for the likelihood

that a foul is called is the style of offense the opponent plays in terms of the distance from

which they make their shot attempts. An increased number of shot attempts from behind

the three-point line by the opponent could reduce the number of fouls, independent of
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effort provided.17 In order to account for this, we control for the opponent team’s number

of three-point attempts in the regular season. In addition, we control for the speed of

the opponent’s play, as it seems quite possible that a team will commit fewer fouls if the

opposing team slows down the game for tactical reasons or in order to reduce certain

disadvantages. A good proxy for how fast an opponent plays is the regular season average

of the number of field goal attempts per minute, which is therefore added to the set

of control variables. Moreover, we control for the opponent team’s free-throw success

rate. Given that the penalty for a personal foul is a free-throw for the opponent team,

free throws for the opponent are clearly more costly for a team if the opponent team’s

free-throw success rate is high.

Another concern for the effort measure could be the presence of a so-called zone

defense. Zone-defense is a style of defense that is less physical and relies more on opti-

mal positioning in space and, thus, might produce fewer fouls independent of the effort

provided.18 One practical way of operating against an opposing zone defense is to con-

centrate more on distance shooting. Consequently, the number of attempted three-point

shots should be higher in the presence of a zone defense, as the defense can be attacked

more effectively from the distance. Figure 5 plots the evolution of fouls over time. The

change in background shade indicates the rule change in the 2000/01 NBA season, which

made zone defense legal. The figure suggests that the rule change had no effect on the

average number of fouls, and the long time trend remained unaffected. In the empirical

analysis we will control for season fixed effects to account flexibly for the time trend in

the average number of personal fouls.

Effort and Outcomes. The discussion so far has provided several arguments why the

relative deviation from the average number of personal fouls in the regular season is a

valid proxy for aggregate team effort in the context of this paper. In what follows, we

provide more direct evidence on these arguments. Recall that we use fouls as a measure

17The three-point line is a mark on the floor which separates the area where a successful basket
counts two points from the rest of a field where it is worth 3 points. The distance between the three-
point line and the basket has been the subject of multiple changes since the founding of the NBA. See
www.nba.com/analysis/rules_history.html.

18A zone defense is a form of defense where a player defends a certain area rather than defending
against an opposing player man-to-man. A detailed overview on the evolution of rules regarding illegal
defense is to be found at www.nba.com/analysis/rules_history.html.
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Figure 5: Personal Fouls During the Regular Season and During Playoff Tournaments
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of aggregate team effort, since fouls measure how intense the defender attacks his oppo-

nent and how physically close he is in coverage. This type of defensive effort may then

sometimes – but not always – result in a personal foul. One would therefore expect that

higher defensive effort increases turnovers of the opponent team (i.e. stealing the ball)

and thereby helps to prevent the opponent from scoring. This implies that teams that

defend intensively have a higher share of ball possession. Since gaining possession of the

ball is a necessary prerequisite for subsequent scoring attempts, we would also expect that

intensively defending teams score more often.

Table 1 presents the corresponding regression results and documents that higher

effort, indeed, increases turnovers of the opponent team, both for underdogs and favorites.

Moreover, effort reduces the points scored by the opponent team out of the field (net of free

throws), suggesting that one additional foul (relative to the regular season average) reduces

points of the opponent team by 0.50. The effect is slightly larger when considering only

the sample of underdogs, and slightly lower when considering favorites, but the differences

are not significant. Finally, more fouls are apparently successful in increasing the number

of own points scored, maybe because higher turnover rates make quick advances in the

offense more profitable. Again, the effect appears to be slightly larger for underdogs than

for favorites. The downside of more effort in terms of personal fouls, however, is a higher

number of free throws for the opponent team. According to the point estimates, one
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Table 1: The Effect of Effort on Outcomes

Opponent’s Own

Sample: Pointsa Turnovers Free throwsb Points
Pooled

effort -0.505*** 0.053*** 1.068*** 0.349***
(0.042) (0.015) (0.019) (0.042)

N 4398 4266 4398 4398
R2 0.259 0.109 0.532 0.350

Underdogs

effort -0.571*** 0.055** 1.057*** 0.385***
(0.060) (0.021) (0.025) (0.057)

N 2199 2133 2199 2199
R2 0.270 0.137 0.549 0.351

Favorites

effort -0.436*** 0.047** 1.103*** 0.326***
(0.056) (0.021) (0.028) (0.064)

N 2199 2133 2199 2199
R2 0.262 0.114 0.533 0.346

Robust standard errors (clustered for individual playoff-series) in round parentheses. All
specifications include a dummy equal to 1 if team plays at home, a a dummy equal to 1 if
series is decided in best-of-7 mode with best-of-5 as the base category, playoff-stage dummies,
and overtime dummies. *, ** and *** indicate statistical significance at the 10-percent level,
5-percent level, and 1-percent level, respectively.

a Total number of points scored by opponent team from the field (without points from free
throws).

b Total number of points scored by opponent through free throws.

additional foul leads to one additional point from free throws scored by the opponent

team.

3.4 Empirical Framework

In order to test whether competitors are forward looking, we start by considering the

following log-linearized version of equation (7):

ln

[

N
∑

k=1

e∗ik

]

= lnαi + ln f(θi) + ln g(κi,Mi, Rnow, Rfut) .
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According to the theoretical model, the log of current aggregate team effort thus depends

additively on the log of own absolute strength, on the log of a function f(θi) that accounts

for the impact of heterogeneity, and on the log of a function g(κi,Mi, Rnow, Rfut) that

determines the value of winning the current interaction. Based on the log-linearized

version of equation (7), we estimate the empirical model

ln(effort it) = β0 + β1 ln(heterogeneityit) + β2 ln(Et[rel. strengthi,t+1]) + Ω′Xit + ǫit (12)

where heterogeneityit is the empirical counterpart to θF and Et [rel. strengthi,t+1] is

the empirical counterpart to κi. Intuitively, we use linear approximations for the two

functions f(·) and g(·). Recall that f(·) is strictly concave with a maximum value for

homogeneous teams (θi = 1). Hence, f(·) is strictly decreasing in θF (since θF > 1)

and thus in heterogeneityit. Also recall that g(·) is strictly increasing in κi and thus in

Et[rel. strengthi,t+1], ceteris paribus. Consequently, the theoretical model predicts that

β2 – the effect of future relative strength κt+1 on stage-t effort – is positive if members of a

team are forward looking. Alternatively, the coefficient estimate for β2 is zero if members

of a team focus entirely on the immediate consequences of their actions.19

Apart from the linear approximation of f(·) and g(·), there are two additional dif-

ferences between the estimation equation and the log-linearized version of equation (7).

First, the estimation framework does not explicitly control for the absolute strength of a

team, since the effort measure is normalized with respect to the regular season average,

which already accounts for strength. In particular, the regular season average of personal

fouls is strongly correlated with the SRS-based measure of absolute strength.20 Second,

the empirical specification includes additional control variables. Specifically, the vector

X controls for team-specific playing styles such as the opponent’s free throw percentage

in the regular season, the opponent’s three-point percentage, the absolute number of own

shot attempts, the opponent’s absolute number of shot attempts, the number of three-

19Unreported estimation results obtained with quadratic specifications for the influence of θF and κi

deliver no evidence for non-linear effects, suggesting that the linear approximation of the two functions
f(·) and g(·) is justified.

20The pairwise correlation coefficient is -0.14 and highly significant. Unreported results show that
adding ability as an additional control variable delivers coefficient estimates for this variable that are
always insignificant, as one would expect if ability is already controlled for by the normalization of the
effort measure. Details are available from the authors upon request.
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point shot attempts allowed and the percentage of successful three-point shots allowed –

everything measured for the regular season preceding the playoffs. Moreover, X includes

a variable counting the number of previous meetings in the preceding regular season, sea-

son fixed-effects, a dummy variable equal to 1 if the team i plays at home, a dummy

equal to 1 if the series are decided in best-of-7 mode with best-of-5 as the base category,

playoff-stage dummies21, standings dummies22 and overtime dummies.23 Standard errors

are computed allowing for clustering at the level of individual playoff-series (thus com-

prising dependencies in observations of two teams that play each other in a given play-off

round).

Note that the unit of observation in the empirical analysis is a single game. The main

hypothesis underlying the analysis concerns the impact of the expected strength of the

future opponent on current effort: variations in the strength of the future opponent change

the incentives of a team from the outset of the game, but not within the game. Hence, we

are not interested in (minute-by-minute) dynamics within a game. The dynamics within

a game depends on the effort – and success – of the two teams as the game proceeds and

can be considered to be noise with respect to our main hypothesis.

4 Main Results

4.1 Are Competitors Forward Looking?

Table 2 presents the main results from estimating model (12). Consider first column

(1), the pooled sample that includes favorite and underdog teams on the current stage.

The results show that aggregate team effort in the current round reacts to variation in

the expected relative strength on the next stage of the tournament. In particular, teams

exert significantly more effort in response to standing a better chance of prevailing in

the next stage of the tournament, consistent with predictions of the theoretical model

21Playoff-stage dummies control for the structure of prizes and ensure that estimates across different
stages are comparable.

22All standings are defined from the perspective of the observed team. A standing of, e.g., ‘1-0’ indicates
that the current observation is in the second game with the observed team leading the playoff series by
one game.

23We also estimate a specification including the number of rest days and the travel distances between
team locations. The results do change neither qualitatively nor quantitatively.
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under the assumption that team members are forward looking. The negative sign of the

interaction of future relative strength and the underdog dummy indicates that underdogs

are less responsive to variation in their future relative strength, even though the coefficient

estimate is not significantly different from zero.

Given that favorites and underdogs in a game may have different incentives and pos-

sibilities to react to variations in future relative strength, we estimate this effect separately

for favorite and underdog teams in columns (2) and (3) of Table 2. The results show that

both favorite and underdog teams compete more intensively if their (expected) future

opponent becomes weaker, even though the point estimate is slightly larger for favorite

than for underdog teams.

Regarding the set of additional control variables, we find that three factors are par-

ticularly important. First, we find evidence for the predicted negative influence of hetero-

geneity between current opponents on the intensity of the competition – the respective

coefficient in column (1) is negative and highly significant. It appears, however, that it is

mainly the favorite team that reduces its current effort in response to weaker (underdog)

opponents, since the respective coefficient estimate is close to zero and insignificant for

underdog teams in column (3). Second, we find some evidence that teams take the free-

throw success rate of their opponents into account when choosing their defense intensity.

In particular, ceteris paribus, teams commit fewer fouls if the free-throw success rate of

their opponents is high. Finally, we find that the number of matches against the same

opponent in the regular season affects behavior in the playoffs. The positive impact of this

control variable on the intensity of play might be explained by local rivalries, for example,

since teams play more often against nearby opponents from the same (eastern or western)

conference in the regular season.

The log-log specification delivers a straightforward quantitative interpretation for

the estimated coefficients for future relative strength that are of primary interest: if the

strength relative to the expected future opponent increases by one percent, underdog and

favorite teams respond by increasing the empirical proxy for current aggregate team effort

by approximately 6 percent and 8 percent, respectively. It is not possible to directly link

the size of the estimated coefficients for future relative strength to the theoretical model,

however, since the value of winning the current interaction, g(κi,Mi, Rnow, Rfut), is only
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Table 2: Future Relative Strength and Current Effort

Dependent Variable: ln[effort t]

Pooled samplea Favorites Underdogs

(1) (2) (3)

ln(Et[rel. strengthi,t+1]) 0.060** 0.081*** 0.056*
(0.028) (0.030) (0.031)

ln(Et[rel. strengthi,t+1]) -0.048 - -
× underdog (0.041) - -

Additional control variables

ln(heterogeneityt) -0.039** -0.076*** 0.015
(0.020) (0.029) (0.028)

Underdog 0.005 - -
(0.008) - -

No. of field goal 0.001 0.004* -0.002
attempts reg. seasonb (0.001) (0.002) (0.002)

No. of opponent’s field goal -0.001 -0.003 0.001
attempts reg. seasonb (0.001) (0.002) (0.002)

Three-point attempts -0.001 -0.002 -0.002
allowed in reg. seasonb (0.003) (0.004) (0.005)

Three-point percentage 0.204 -0.092 0.530*
allowed in reg. season (0.182) (0.246) (0.270)

Opponent’s three-point % -0.000 -0.000 0.000
regular season (0.000) (0.000) (0.000)

Opponents free throw % -0.004*** -0.002 -0.005***
reg. season (0.001) (0.002) (0.002)

No. of matches against 0.018** 0.017 0.020**
opponent in reg. season (0.008) (0.011) (0.010)

Additional binary controls

Season FE yes yes yes

Home-game dummy yes yes yes

Best-of-7 series dummy yes yes yes

Playoff-Stage dummy yes yes yes

Standing-in-Series dummy yes yes yes

Overtime dummies yes yes yes

Observations 4398 2199 2199
R2 0.125 0.147 0.142

Note: Coefficients for additional variables controlling for team specific characteristics are not reported due to
space limitations. *, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and
1-percent level, respectively. Robust standard errors (clustered for individual playoff-series) in parentheses.

a Pooled sample with interaction term, binary variable indicating underdog is included.

b Absolute number re-scaled (divided) by 100.
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approximated linearly by the empirical counterpart of κi in the empirical implementation.

In this sense, our empirical approach relies on the prediction that the average reaction

to variation in κi does not depend on the level of free-riding within a team Mi, on the

immediate prize Rnow, and on the future prize Rfut. Obviously, the effect might be hetero-

geneous, in particular along these dimensions. In fact, theory predicts that the intensity

of the reaction to variation in κi might depend on all these factors. Hence, the results

so far constitute an estimate of the average effect of expected future strength on current

effort, holding fixed all other potential determinants. In sections 5.1 and 5.2 below, we

will investigate the heterogeneity in the intensity of the reaction of effort to variation in κi

exploiting (a) team-specific information from performance in the regular season preceding

the payoffs, which allows us to construct a measure of free-riding within teams and (b)

the convex prize structure across stages of the tournament, respectively.

4.2 Robustness Checks

In this subsection, we investigate the robustness of the results in two dimensions. In

particular, we investigate whether the results depend on the log-log specification of our

empirical model, or on the way the expected strength of the opponent in the next stage

of the tournament is constructed.

Table 3 presents two alternative specifications for current aggregate team effort, cur-

rent heterogeneity and the expected relative strength on the next stage of the tournament,

using the same set of control variables as in Table 2. Specifications (1) and (2) estimate

a reduced form version of equation (7). The estimates indicate that our findings do not

depend on the log linearization of the estimation equation. When using the ratio (rather

than the log of the ratio) of current heterogeneity and expected relative future strength,

as well as the ratio of fouls in the playoffs over the average number of fouls in a regular

season game (rather than the log ratio), the estimation results also reveal that teams com-

pete more intensively if their expected future opponent becomes weaker – even though

the effect is not statistically significant for underdog teams. Columns (3) and (4) report

results for a specification where differences of absolute strength rather than ratios are

used to construct heterogeneity in the current interaction and relative strength in the
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Table 3: Future Relative Strength and Current Effort – Alternative Specifications

Dependent Variable: effort t PF playoff - avg. PF season

Favorites Underdogs Favorites Underdogs
(1) (2) (3) (4)

Et[rel. strengthi,t+1] 0.072** 0.063 - -
(0.029) (0.039)

Et[αit − αt+1] - - 0.133*** 0.102*
(0.049) (0.053)

Additional control variables Yes Yes Yes Yes
Additional binary controls Yes Yes Yes Yes

Observations 2199 2199 2199 2199
R2 0.157 0.156 0.153 0.151

Coefficients for the set of additional control variables – see Table 2 for a complete list – not reported due to space
limitations. *, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent
level, respectively. Robust standard errors (clustered for individual playoff-series) in round parentheses.

next stage of the tournament.24 Results are very similar to results obtained using either

a ratio specification as in Table 3, or a log-log ratio specification as in Table 2, suggesting

that the results are robust to variations in the specification of key variables.

The second robustness check concerns the construction of the measure for expected

future relative strength. Recall that the expected strength of a future opponent was

defined as the absolute strength of the actual next competitor whenever the opponent

is known, and otherwise equal to the probability-weighted convex combination of the

absolute strength of potential future opponents, Et [αj,t+1] = ps · αs,t + (1− ps) · αl,t.

Table 4 presents results for alternative specifications, while using the same set of

additional control variables as in Table 2. The results in Columns (1) and (2) are based

on the assumption that the expected strength of a future opponent is always equal to

the probability-weighted convex combination of the absolute strength of potential future

opponents, and thus not updated in case the future opponent is already known at the time

of a game. In Columns (3) and (4), we discard the underdog in the respective parallel game

and instead use the strength of the favorite team in the parallel interaction to construct

the expected strength of the future opponent. Finally, columns (5) and (6) represent

24This difference specification would result from a Lazear and Rosen (1981) type contest model that
determines winning probabilities based on effort differences rather than effort ratios as the Tullock (1980)
model employed in our theoretical analysis.
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Table 4: Future Relative Strength and Current Effort – Defining the Relative Strength of
Future Opponents

Dependent Variable: ln[effort t]

probability weighteda favorite onlyb baseline + updatingc

Fav. Under. Fav. Under. Fav. Under.
(1) (2) (3) (4) (5) (6)

ln(Et[rel. str.i,t+1]) 0.079** 0.055* 0.091*** 0.058** 0.090*** 0.055*
(0.032) (0.033) (0.029) (0.030) (0.028) (0.029)

Additional control variables Yes Yes Yes Yes Yes Yes
Additional binary controls Yes Yes Yes Yes Yes Yes

Observations 2199 2199 2199 2199 2199 2199
R2 0.147 0.142 0.149 0.143 0.149 0.142

Coefficients for the set of additional control variables – see Table 2 for a complete list – not reported due to space limitations.
*, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level, respectively. Robust
standard errors (clustered for individual playoff-series) in round parentheses.

a The expected future opponent’s strength is defined by the probability-weighted average of the absolute strength of both
potential future opponents.

b Only the favorite in the parallel interaction is considered as the expected future opponent.

c For these specifications we use the same measure for future heterogeneity as in the preferred specification with an additional
probabilistic updating of the win percentages of the potential future opponents.

an improved version of the baseline measure with an additional probabilistic updating

of the win percentages of the future opponents.25 The results are very robust across all

specifications. In particular, both for favorites as well as underdogs, the coefficient for

future heterogeneity is positive and significant in all specifications, but somewhat larger

for the favorite teams than for the underdog teams.

5 Additional Results

This section reports the results of empirical analyses that explore additional aspects and

implications of the model regarding free riding, the role of the prize structure, and the

influence of pivotal games.

25Probabilistic updating takes into account the updated win probabilities according to the current
standings in the best-of-5 or best-of-7 series using binomial updating.
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5.1 Forward Looking Behavior and Prevalence of Free Riding

The properties of the continuation value deliver an additional prediction regarding the

effect of relative future strength on current aggregate team effort. In particular, the

continuation value is decreasing in the prevalence of free-riding within a team, Mi – see

condition (5). Consequently, variation in the relative future strength κi of team i is more

important the lower the prevalence of free-riding within a given team.26 Intuitively, a

high prevalence of free riding reduces the aggregate expected equilibrium team payoff in

any stage of the tournament and thus the value of participation in future stages of the

tournament – see condition (4). Consequently, the continuation value decreases in the

prevalence of free riding and it becomes ceteris paribus less attractive to reach future

stages of the tournament if the prevalence of free-riding within a given team is high.

Hypothesis 2 (Free Riding). If members of team i are forward looking, the effect of

the relative strength of team i in the future interaction on aggregate team effort in the

current interaction is decreasing in the prevalence of free-riding Mi within team i.

Measuring the prevalence of free-riding within a given team empirically is difficult, even

though the NBA data offer information on a rich set of team characteristics. We can

exploit the fact that the number of players within any team is much larger than the

maximum number of players who compete on the field in a game. In particular, only 5

players of each team are active at any point in time, even though NBA teams typically

carry a stock of 13 players on their active roster.27 Consequently, players typically compete

for starting positions in a team. At the same time, the intensity of this competition is

likely to differ across teams. In particular, the ability of different players for a given

position within the team might be very similar in some and very different in other teams.

This implies that a player for a given position is unlikely to be replaced if the ability

difference to other team member is high – even if its current performance is bad – while

the opposite holds if the ability difference is low. Consequently, players in a team without

26This prediction follows immediately from the fact that the derivative
∂CV∗

i
(κi,Mi,Rfut)
∂κi

is strictly de-
creasing in Mi.

27Due to injuries, trades or suspensions, the number can even go up to 20 players or more who partic-
ipate during the regular season.
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competition for starting positions may slack off in some games and are nevertheless likely

to play in future games since they are hard to replace.

It is an immediate consequence of intense competition for starting positions that

players of a team cannot free ride on the effort of their team members, since they are then

likely to be replaced by other players in future games. If competition for starting positions

is essentially absent, however, there is no credible sanction for free riding behavior, as these

players are likely to play in future games (almost) independent of their past performance.

Based on the idea that competition for starting positions increases personal costs

of free riding, we use the distribution of individual playing times in the regular season

preceding the playoffs to construct a proxy for the prevalence of free-riding within a given

team. Intuitively, the more evenly total playing time in the regular season is distributed

across the stock of players in the active roster, the lower is the ability difference between

players. This implies that the competition for starting positions is high, such that the

prevalence of free riding is low.

As measure of the prevalence of free-riding within team i, Mi, we therefore calculate

the ratio of all minutes played by the five most-used players in the regular season over the

average of minutes played by all other player’s. Formally, we first order the N players of

team i by their playing time in the regular season. Let timek be the respective playing time

of the kth most active player (in minutes). The empirical counterpart for the parameter

Mi employed in the theoretical model is then given by

FRi =

∑n

k=1 timek
∑N

k=n+1 timek
(13)

for n = 5. As a robustness check, we also calculate the share of the team’s most active

player k = 1 in the regular season over the total playing time of all other players k = 2, .., N

who contributed during the regular season, i.e., we consider the case where n = 1.

Table 5 displays the empirically observed reaction to variation in the expected future

strength separately for teams with a low and high prevalence of free riding, respectively. In

particular, the coefficient of interest is estimated separately for teams above and below the

median of the distribution of the aforementioned measures of free riding. Using the same

set of control variables as in Table 2, the estimates show that the expected strength of
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Table 5: Future Relative Strength, Current Effort, and Free Riding within Teams

Dependent Variable: ln[effort t]

FR Measure 1: Share playing time (n = 5) FR Measure 2: Most used player (n = 1)

Favorites Underdogs Favorites Underdogs

FRi low
a FRi high

b FRi low
a Mi high

b FRi low
a FRi high

b FRi low
a Mi high

b

ln(Et[rel. strengthi,t+1]) 0.109** 0.032 0.086* 0.044 0.112*** 0.039 0.108** 0.010
(0.045) (0.035) (0.044) (0.042) (0.038) (0.044) (0.051) (0.040)

Additional control variables Yes Yes Yes Yes Yes Yes Yes Yes
Additional binary controls Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1048 1151 1152 1047 1082 1117 1114 1085
R2 0.152 0.192 0.164 0.196 0.197 0.163 0.159 0.177

Free riding measures as reported in the text. Coefficients for the set of additional control variables – see Table 2 for a complete list – not reported due
to space limitations. *, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level, respectively. Robust
standard errors (clustered for individual playoff-series) in round parentheses.

a Below the median of overall free-riding parameter distribution.

b Above the median of overall free-riding parameter distribution.
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the opponent on the next stage of the tournament has a much stronger impact on current

aggregate team effort both for favorite and underdog teams if the prevalence of free riding

is low, compared to the alternative case where the prevalence of free riding is high. In

particular, even though the estimated coefficient is always positive, the estimate is small

and not significantly different from zero if free riding is high, and instead much larger and

significant if free riding is high. This pattern holds for both of the aforementioned free

riding measures, i.e. both for n = 1 and n = 5. Taken together, the empirical evidence is

thus consistent with Hypothesis 2.

5.2 Forward Looking Behavior and the Structure of Prizes

Another prediction regarding the effect of relative future strength on current aggregate

team effort refers to the structure of prizes. In particular, recall that the continuation

value is increasing in the prize Rfut awarded to the winner of the interaction in the next

stage of the tournament – see equation (5) for details. Consequently, provided that the

members of a team are indeed forward looking, variation in the relative future strength

κi of team i is more important the higher the prize Rfut.
28

Hypothesis 3 (Prize Structure). If members of team i are forward looking, the effect of

the relative strength of team i in the future interaction on aggregate team effort in the

current interaction is increasing in the prize Rfut awarded to the winner of the future

interaction.

To investigate whether the response to the relative future strength depends on the reward

for the winner of the future interaction, we exploit the well known fact that the reward

structure in the playoffs is strictly convex across stages. Figure 6 displays the pattern

of official bonus payments from the NBA to teams in 2007 and 2013, respectively, across

different stages of the tournament. The figure nicely illustrates that rewards for winning

round 3 and for winning the final (round 4) are substantially higher than bonus payments

for teams that win round 1 or round 2. Given that team managers are likely to distribute

these rewards among members of their team, these official rewards should also affect the

28This prediction follows immediately from the fact that the derivative
∂CV∗

i
(κi,Mi,Rfut)
∂κi

is strictly in-
creasing in Rfut.
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Figure 6: The Structure of Prizes in the NBA
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behavior of players. Importantly, however, there are additional bonus payments to indi-

vidual players that are part of confidential labor contracts. Anecdotal evidence suggests

that these bonuses have a convex structure across stages as well.

Taken together, this implies that aggregate team effort is expected to be higher in

round 3 than in earlier rounds of the tournament, since the prize for winning round 3 is

substantially higher than in previous rounds of the tournament. The empirical counterpart

for aggregate team effort indeed reflects this pattern. Effort as defined in equation (11) is

roughly 5.5% higher in rounds 1 and 2 of the playoffs than in the regular season (where

the value of winning a single game is arguably lower than in the playoffs), and increases

by another 2% in round 3 as compared to rounds 1 and 2 of the playoffs. The convex

structure of prizes across stages is also expected to affect the reaction to variation in the

expected relative future strength, however. In particular, the reaction to variation in the

expected relative future strength is expected to be more pronounced in later than in initial

stages of the tournament.

Table 6 reports the results about the reaction of effort to variation in the expected

future strength separately for rounds 1, 2 and 3, using the same set of additional control

variables as in Table 2. The coefficient estimates for the effect of variation in the expected

future strength are uniformly increasing from round 1 to round 3 both for favorite and

underdog teams. In addition, the effects are significantly different from zero only in later

rounds of the tournament, event though the number of observations is highest in the initial
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Table 6: Future Relative Strength and Current Effort by Tournament Round

Dependent Variable: ln[effort t]

Favorites Underdogs

round 1 round 2 round 3 round 1 round 2 round 3

ln(Et[rel. strengthi,t+1]) 0.060 0.090* 0.156** 0.043 0.058 0.192***
(0.038) (0.054) (0.065) (0.039) (0.055) (0.059)

Additional control variables Yes Yes Yes Yes Yes Yes
Additional binary controls Yes Yes Yes Yes Yes Yes

Observations 1145 699 355 1145 699 355
R2 0.133 0.276 0.318 0.162 0.181 0.319

Coefficients for the set of additional control variables – see Table 2 for a complete list – not reported due to space limitations.
*, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level, respectively. Robust
standard errors (clustered for individual playoff-series) in round parentheses.

round of the tournament. In this sense, the empirical evidence is in line with Hypothesis

3.

5.3 Extent of Forward-Looking Behavior

While the analysis so far has shown that teams are forward looking and account for the

option value of participation in the next stage of the tournament, a related question refers

to the extent to which the continuation value depends on the relative strength in even

later stages. As a next step, we therefore investigate whether observed effort choices are

only influenced by the next interaction, or whether they also react to variation in the

continuation value taking the full tournament structure into account. The structure of

the NBA playoff tournament allows us to compute continuation values that reach up to

three stages into the future when restricting attention to round 1 games, and option values

that reach two stages into the future when restricting attention to round 1 and round 2

games, respectively. To avoid making assumptions about the structure of prizes across

stages, which are difficult to evaluate in terms of the actual rewards Rfut as perceived by

the teams, we assume that prizes are identical across stages for simplicity.29 Extending

29As discussed previously in Section 5.2, prizes are likely to increase across stages. In this sense, the
assumption employed in the subsequent analysis is conservative, since option values in future stages are
likely to be even more important for current behavior when accounting for the convex structure of rewards.
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our previous definition of option values, we define the option value of teams who account

for up to two future stages of the tournament as

Et[rel. str.i,t+1 + pi,t+1 × rel. str.i,t+2], (14)

where pi,t+1 is the probability that team i beats the expected future opponent team

in stage t+1 of the tournament. Analogously, the option value of teams who account for

all future stages of the tournament in round 1 is defined as

Et[rel. str.i,t+1 + pi,t+1 × (rel. str.i,t+2 + pi,t+2 × rel. str.i,t+3)], (15)

where pi,t+2 is the probability that team i beats the expected future opponent team

in stage t+ 2 of the tournament.30

Table 7 displays the estimated coefficients for the expected relative strength when

restricting attention to the immediate next stage of the tournament as in the baseline

specification, or instead incorporating the next two stages of the tournament, respectively.

For direct comparability, both sets of estimates are obtained on the same estimation

sample, which comprises a lower number of independent observations than the baseline

specifications as the observations for round 3 of the playoffs are not used. The coefficient

estimates indicate that variation affects effort even when accounting not only for the

expected relative strength during the next stage of the tournament, but also for the

expected relative strength two stages into the future. In particular, the coefficient is

significant and positive both for favorites and for underdogs, and more precisely estimated

in statistical terms. The size of the coefficient is similar or even slightly larger when

variation in expected strength further in the future is incorporated. This is an indication

that the baseline specification, which focused on the relative strength on the next stage

of the tournament, delivers rather conservative results as it systematically underestimates

the continuation value.

30We refrain from estimating a model with separate variables for relative strength in t + 1, t + 2 and
t + 3 because of the high correlation between these variables. The correlation coefficients between t + 1
and t+ 2 and between t+ 1 and t+ 3 are 0.92 and 0.86, respectively.
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Table 7: Future Relative Strength Beyond t+ 1 and Current Effort

Dependent Variable: ln[effort t]

Favorites Underdogs

ln(Et[rel. strengthi,t+1]) 0.070** 0.057*
(0.031) (0.032)

ln(Et[rel. str.i,t+1 + pi,t+1 × rel. str.i,t+2]) 0.101*** 0.060**
(0.031) (0.032)

Additional control variables Yes Yes Yes Yes
Additional binary controls Yes Yes Yes Yes

Observations 1844 1844 1844 1844
R2 0.151 0.154 0.145 0.145

Coefficients for the set of additional control variables – see Table 2 for a complete list – not reported due to space limitations.
*, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level, respectively. Robust
standard errors (clustered for individual playoff-series) in round parentheses.

An alternative way of investigating the extent to which relative strength in future

stages of the tournament influences current effort choices is to restrict attention to round

1 of the tournament. This allows computing the expected relative ability in up to three

future stages of the tournament. Table 8 presents the corresponding results. The pattern

is remarkably similar. In particular, both for favorite and underdog teams the coefficient

estimates for the expected relative strength are comparable or even slightly larger once

additional future stages are incorporated in the computation. Taken together, these results

are consistent with the view that teams account not only for the immediate next step, but

more generally for the continuation value of potential participation in all future stages

of the tournament. At the same time, it appears that the effect of variation in relative

strength, not only in the immediately following stage of the tournament but up to three

stages in the future, seem to affect current effort provision of teams. This also suggests

that the results of the baseline specification, which only incorporates variation in expected

relative strength in the immediately next stage, is appropriate as it allows making the most

efficient use of the available data. At the same time, this empirical strategy is conservative

in the sense that testing the influence of the continuation value when restricting attention

to the immediate next stage only constitutes a necessary condition for the purpose of the

research question.
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Table 8: Variation in the Computation of Future Relative Strength and Current Effort

Dependent Variable: ln[effort t]

Favorites Underdogs

ln(Et[rel. strengthi,t+1]) 0.060 0.043
(0.038) (0.039)

ln(Et[rel. str.i,t+1 + pi,t+1 0.076* 0.050
×rel. str.i,t+2]) (0.039) (0.088)

ln(Et[rel. str.i,t+1 + pi,t+1 0.064* 0.055*
×(rel. str.i,t+2 + pi,t+2 × rel. str.i,t+3)]) (0.036) (0.035)

Additional control variables Yes Yes Yes Yes Yes Yes
Additional binary controls Yes Yes Yes Yes Yes Yes

Observations 1145 1145 1145 1145 1145 1145
R2 0.133 0.162 0.134 0.162 0.133 0.163

Coefficients for the set of additional control variables – see Table 2 for a complete list – not reported due to space limitations. *, ** and ***
indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level, respectively. Robust standard errors (clustered for
individual playoff-series) in round parentheses.

5.4 Forward Looking Behavior and Pivotal Games

A more subtle aspect of forward looking behavior relates to the extent to which the con-

tinuation value is salient in the decision making process. For instance, effort provision in

a particular game might be more or less decisive for actually attaining the continuation

value due to the specificities of the tournament. The NBA employs a best-of-seven (and

sometimes best-of-five) winning rule in all stages of the tournament. The preceding anal-

ysis accounts for this feature by the inclusion of standing dummies. In addition, standard

errors are clustered on the level of individual playoff-series. However, potentially team

behavior might be influenced more or less by the continuation value in the course of a

series depending on the particular standing in the series. In particular, in decisive games

effort might be influenced more strongly by the continuation value as compared to games

that are not decisive and thus sensed as less important for obtaining the continuation

value. The theoretical model implicitly assumes a best of one winning rule in which each

game on each stage is decisive to keep the theoretical analysis tractable. However, intu-

itively the continuation value appears in the objective function (6) with full weight only

in decisive games, whereas its weight is reduced (e.g., in terms of a factor 0 < ρ < 1)
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in non-decisive games.31 Consequently, the observed impact of relative future opponent

strength might be more or less present in some games of a series, and the effect might be

heterogeneous depending on the current standing within the series or across games within

a series.

In the following, we address the question about heterogeneity of the effect depending

on the salience of the continuation value by using an explorative approach and investigate

whether it makes a difference if a game can potentially decide the series in the current stage

of the tournament or not. In particular, we split the sample by distinguishing between

pivotal and non-pivotal games. When considering pivotal games, we further distinguish

between situations in which the favorite team can decide the series in its favor, and

situations in which the underdog team can win the entire series.

Table 9 reports the estimated coefficients for the effect of variation in future relative

strength on current behavior for the respective sub-samples. The qualitative pattern is

the same for favorite and for underdog team and suggests that the effect of relative future

strength on current aggregate team effort is most pronounced in pivotal games where

a team can decide the series in its favor, intermediate in non-pivotal games, and least

pronounced in pivotal games where a team faces the risk of losing the series. It appears

that teams are forward looking whenever the opportunity costs of doing so – reflected

by the risk of losing focus in the current interaction that goes hand-in-hand with the

consideration of future games – are low, but not if these opportunity costs are high. In

other words, teams seem not to react to the strength of their prospective future opponent if

chances that they lose their current series are high, while they appear to take the strength

of future opponent teams into account when they are close to winning the current series.

5.5 Evidence from the NCAA

To further investigate whether the teams behave differently in pivotal games, we use in-

formation from a complementary data set. In particular, we consider the championship

31Extending the model to explicitly account for a best-of-seven winning rule would be possible, but it
while this extension would provide limited insights on the question at hand, it would still be deficient
regarding the actual tournament structure of the NBA play-offs, since each series follows a predefined
schedule of home and away games, and both winning odds and the style of play in basketball presumably
depend on the location of a game. In the empirical analysis we control for this issue by adding a home
dummy variable.
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Table 9: Future Relative Strength and Current Effort – Stratified by Standings

Dependent Variable: ln[effort t]

non-pivotal favorite can win underdog can win

Fav. Under. Fav. Under. Fav. Under.
(1) (2) (3) (4) (5) (6)

ln(Et[rel. strengthi,t+1]) 0.068* 0.044 0.140** 0.038 0.027 0.076
(0.037) (0.036) (0.055) (0.062) (0.094) (0.090)

Additional control variables Yes Yes Yes Yes Yes Yes
Additional binary controls Yes Yes Yes Yes Yes Yes

Observations 1578 1578 406 406 215 215
R2 0.154 0.149 0.222 0.207 0.293 0.263

Coefficients for the set of additional control variables – see Table 2 for a complete list – not reported due to space
limitations. *, ** and *** indicate statistical significance at the 10-percent level, 5-percent level, and 1-percent level,
respectively. Robust standard errors (clustered for individual playoff-series) in round parentheses.

tournament of the National Collegiate Athletic Association (NCAA). The most impor-

tant differences between the NBA and the NCAA regulation in this context concern the

organisation of playoffs. While in the NBA each round is decided by a best-of-seven or

best-of-five series, each NCAA tournament round is decided in a single game, which is

held on neutral ground to avoid home bias. We have access to data for 10 seasons from

2003 through 2013, covering a total of 682 games. Empirical counterparts for aggregate

team effort as well as for current and future relative strength are constructed in the same

way as for the NBA data. Unfortunately, the SRS measure of absolute team strength is

only available for the entire season including all games in the playoffs. It is thus not only

based on regular season performance preceding the playoffs as for the NBA. Consequently,

the empirical counterparts for current heterogeneity and relative future strength that are

based on the SRS measure of absolute team strength are likely to be less accurate in the

initial stages of the playoffs. At the same time, the measure of absolute strength should be

even more accurate than in the NBA in later stages of the tournament, since the measure

of absolute strength accounts for the performance in initial stages of the tournament.

Table 10 presents the respective results for the NCAA using the same estimation

equation previously employed for the NBA. The only difference is that the specifications

no longer include controls for current standing in the series, as each tournament round in
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Table 10: Future Relative Strength and Current Effort – NCAA Data

Dependent Variable: ln[effort t]

Favorites Underdogs

all rounds 1-2 rounds 3-5 all rounds 1-2 rounds 3-5

ln(Et[rel. str.i,t+1]) -0.006 -0.039 0.109* 0.053* 0.025 0.136*
(0.032) (0.037) (0.063) (0.031) (0.034) (0.072)

Add. control variables Yes Yes Yes Yes Yes Yes
Add. binary controls Yes Yes Yes Yes Yes Yes

Observations 682 528 154 682 528 154
R2 0.190 0.208 0.269 0.108 0.129 0.240

Coefficients for the set of additional control variables not reported due to space limitations. *, ** and *** indicate statistical
significance at the 10-percent level, 5-percent level, and 1-percent level, respectively. Robust standard errors (clustered for
individual playoff-series) in round parentheses.

the NCAA is decided in a single game. For favorite teams, we find no evidence for forward

looking behavior when considering either the average across all rounds or only the initial

two rounds of the tournament. However, favorite teams incorporate the strength of future

opponents in their decisions in later rounds of the tournament – the coefficient estimate

is similar in size to the respective coefficients in later rounds for the NBA and significant

at the 10% level. Similarly, we find that underdog teams react strongly to variation in

their future relative strength in later rounds, but not in the initial two rounds. Due

to the construction of the SRS-based absolute strength measure in the NCAA, it is not

entirely clear, however, whether observed differences in the degree of forward looking in

different rounds of the tournament depend on convex rewards or on increased precision of

the measure of (relative) strength.

6 Concluding Remarks

This paper provided an empirical test for whether decision makers are forward looking in

dynamic strategic interactions. In particular, the evidence provides support for the cen-

tral prediction that the continuation value of promotions in firms with multiple hierarchy

levels is an important determinant of incentives in promotion tournaments. The empirical

analysis is based on field data from professional basketball tournaments, and the results
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suggest that tournament participants exert more effort on the current stage of a tourna-

ment if it becomes more attractive to reach the next stage of the tournament because of a

weaker expected opponent. The estimated reaction to changes in the continuation value

is consistently found to be statistically and quantitatively significant.

Changes in the expected relative strength in future interactions may also cause se-

lection effects, as previously noted by Brown and Minor (2014). Even though this paper

focuses on the incentive effects of forward looking behavior, we can test whether differences

in the reaction to changes of the continuation value across subgroups affects winning prob-

abilities. Favorite teams should ceteris paribus be less likely to win if future opponents

are stronger, for example, since the estimated response to variation in the continuation

value is more pronounced for favorite than for underdog teams in all specifications. Reas-

suringly, we find that both the winning probability and the point margin of favorite teams

are indeed decreasing in the expected strength of the future opponent.32

The finding that changes in the expected relative strength in future interactions af-

fect current effort cannot be explained by dynamic or tactical interactions during the

course of a game, since the expected strength of the future opponent team is fixed be-

fore the respective game and does not change during a game. In addition, it is worth

mentioning that this paper gathers evidence in a setting where participants often negate

that they think about future stages of the tournament and instead claim that they focus

entirely on the current game, as indicated in the introductory quote. Moreover, the team

setting implies that factors like the well-known free-riding problem work against finding

evidence for forward looking behavior. In this sense, forward looking behavior is likely

to be even more prevalent in corporate tournaments where human resources management

departments try to make career ladders as transparent as possible for their employees.

Consequently, continuation values should be more salient in the corporate context than

in sports tournaments.

While this paper shows that current effort depends on chances to win the subsequent

stage of the tournament, promotion tournaments often involve more than two stages in

large organizations. Belzil and Bognanno (2008) show, for example, that there are up

32This finding, which is documented in Table 11 in the Appendix, corroborates analogous results by
Brown and Minor (2014) who discard the effect of continuation values on effort and instead focus entirely
on outcomes and selection.
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to ten hierarchical levels between CEO and entry-level management in U.S. firms. The

findings suggest heterogeneity in the degree to which the future is incorporated in current

performance. In particular, forward looking behavior seems more prevalent if the future

interactions are foreseeable with greater certainty or salience, or if they are associated with

greater rewards. In that sense, players take the full future prospects in the tournament

into account, but react more strongly to the immediate future. On the other hand, future

interactions affect performance less if the future is less likely to play a role, as indicated

by the results on decisive versus non-decisive games. Thus, a more explicit investigation

of the formation of expectations about future events is a logical next step and a promising

avenue for future research.
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A Additional Figures

Figure 7: Illustration of the NBA Tournament Structure - Example: 2013 NBA Playoffs

Source: Wikipedia.
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B Additional Tables

Table 11: Effect on Probability of the Favorite Winning and Favorite’s Point Margins
(NBA)

game series

share of share of
wina total pointsb wina total gamesb

(1) (2) (3) (4)

heterogeneityt 0.442*** 0.034*** 0.417*** 0.283***
(0.060) (0.004) (0.076) (0.041)

Et [abs. strengtht+1]
c -0.096 -0.012** -0.109 -0.193*

(0.088) (0.006) (0.163) (0.100)

Observations 2199 2199 434 434
R2 0.150 0.189 0.145 0.199

All specifications include a dummy equal to 1 if the team plays at home, a dummy equal to 1 if
the series is decided in best-of-7 mode with best-of-5 as the base category, playoff-stage dummies,
standings dummies. Robust standard errors (clustered for individual playoff-series for columns 1 and
2 - clustered on team-year level for columns 5 and 6) in parentheses. *, ** and *** indicate statistical
significance at the 10-percent level, 5-percent level, and 1-percent level, respectively.

a Dependent variable is equal to 1 if favorite wins, 0 else.

b Dependent variable is equal to the favorite’s share of total points (games) in game (series).

c Strength of expected future opponent in log.

48



C Properties of f (θi) and g(κi,Mi, Rnow, Rfut)

Properties of f(θi). The function f(θi) is defined as follows:

f(θi) =
θi

(1 + θi)2

The first derivative of f(·) with respect to θi reads

∂f(θi)

∂θi
=

1− θi

(1 + θi)3
. (C.1)

Consequently, f(·) is increasing in θi if 0 < θi < 1, and decreasing in θi if θi > 1.

Properties of g(κi,Mi, Rnow, Rfut). The function g(κi,Mi, Rnow, Rfut) is defined as fol-

lows:

g(κi,Mi, Rnow, Rfut) = [Rnow + CV∗

i (κi,Mi, Rfut)] = Rnow +
N [κi]

2 + (N − 1)κi

(1 + κi)2
·
Rfut

Mi

The first derivative of g(·) with respect to κi reads

∂g(κi,Mi, Rnow, Rfut)

∂κi

=
N(κi + 1) + κi − 1

(1 + κi)3
·
Rfut

Mi

. (C.2)

SinceN ≥ 1, it thus holds that ∂g(κi,Mi,Rnow,Rfut)
∂κi

> 0. Moreover, equation (C.2) is increasing

in the future prize Rfut and decreasing in the prevalence of free riding Mi.
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